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n=0

fnz
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E.g.: Deriving closed form via GF

Fibonacci Numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...
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E.g.: Deriving Closed form of GF

Thus we have
F (x) =

x

1− x − x2
.

But, roots of 1− x − x2 are −ϕ,−τ where

ϕ :=
1 +
√
5

2
and τ :=

1−
√
5

2
.

=⇒ F (x) = − x

(x + ϕ)(x + τ)

=
A

x + ϕ
+

B

x + τ

=
τ√
5

1
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Thus, we get: Fn = 1√
5
(ϕn − τn) . □
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E.g. 2: Deriving an asymptotic

Let an := # alternating permutations of size n, where an = 0 when n
even.

FACT: an = n!tn, where tan(z) =
∞∑
n=0

tnz
n.

GOAL: Find asymptotic for an.

Start with Cauchy Integral formula:

tn =
1

2πi

∫
|z|=ϵ

tan(z)
dz

zn+1
= Resz=0

(
tan(z)

zn+1

)
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E.g. 2: Deriving an asymptotic

Deriving an asymptotic for tn:

STEP 1: Introduce an exponentially smaller integral.

In =
1

2πi

∫
|z|=2

tan(z)
dz

zn+1
.

tan(z) analytic on compact set {|z | = 2} thus bounded.

|In| ≤ len(C ) · max
|z|=2

∣∣∣∣ tan(z)

(2π)zn+1

∣∣∣∣ = 2(2π)
M

(2π)2n+1
= O(2−n).
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Nevertheless...

There is a case when we can solve CPP.

In this case, we can:

1 Determine an asymptotic for fn

2 Bound other asymptotic
contributions (explicitly!).

3 Use bound to show that
eventually fn is positive.

4 Check the first finitely many
terms.
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[

0   1    2    3



How to generalize?

How can we generalize our problem (CPP)?
How can we extend our approach?
There are (at least) two avenues:

Larger GF classes...

Multivariate!
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Generalizing The Problem...

Given a function F : Cd → C which is analytic at the origin, can one
decide whether all its power series coefficients are positive?

Example

Consider

1

(1− x)(1− y) + (1− x)(1− z) + (1− y)(1− z)
=

∑
k,m,n≥0

a(k ,m, n)xkymzn.

Is a(k ,m, n) positive for each (k ,m, n) ∈ N3?
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(1− x)(1− y) + (1− x)(1− z) + (1− y)(1− z)
=

∑
k,m,n≥0

a(k ,m, n)xkymzn.

First conjectured by H. Lewy and K. Friedrichs in 1930.

They were stumped!

G. Szegő gave a proof using ”heavy machinery” from special function
theory, and remarked,

“...the tools used, however, are in no proportion to the simplicity
of the statement...” [Sze33]

In 1933 T. Kaluza proved it again using only elementary techniques.
[Kal33]
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Some other classic results

Authors, Year Function

Asky & Gasper, 1977 1
1−x−y−z+4xyz

Scott & Sokal, 2014 1
1−x−y−z−w+ 2

3
(xy+xz+xw+yz+yw+zw)

Kauers & Zeilberger, 2007 1
1−x−y−z−w+2(yzw+xzw+xyz+xwy)+4xyzw

Gillis, Reznick & Zeilberger, 1983 1
1−x1−...−xd+cx1···xd
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IDEA: Complete positivity from eventual positivity

Suppose we’re given a rational function in d complex variables:

F (z) =
G (z)
H(z)

, H(0) ̸= 0, G ,H coprime.

F is analytic at the origin, so has power series

F (z) =
∑
j∈Nd

fjz j .

Further suppose that one could prove F has eventually positive power
series coefficients along a fixed direction r ∈ Nd .

In other words, fnr > 0 for n large enough.



IDEA: Complete positivity from eventual positivity

Suppose we’re given a rational function in d complex variables:

F (z) =
G (z)
H(z)

, H(0) ̸= 0, G ,H coprime.

F is analytic at the origin, so has power series

F (z) =
∑
j∈Nd

fjz j .

Further suppose that one could prove F has eventually positive power
series coefficients along a fixed direction r ∈ Nd .

In other words, fnr > 0 for n large enough.



IDEA: Complete positivity from eventual positivity

Suppose we’re given a rational function in d complex variables:

F (z) =
G (z)
H(z)

, H(0) ̸= 0, G ,H coprime.

F is analytic at the origin, so has power series

F (z) =
∑
j∈Nd

fjz j .

Further suppose that one could prove F has eventually positive power
series coefficients along a fixed direction r ∈ Nd .

In other words, fnr > 0 for n large enough.



IDEA: Complete positivity from eventual positivity

Suppose we’re given a rational function in d complex variables:

F (z) =
G (z)
H(z)

, H(0) ̸= 0, G ,H coprime.

F is analytic at the origin, so has power series

F (z) =
∑
j∈Nd

fjz j .

Further suppose that one could prove F has eventually positive power
series coefficients along a fixed direction r ∈ Nd .

In other words, fnr > 0 for n large enough.



IDEA: Complete Positivity from Eventual positivity

Then, positivity of all coefficients fnr could be determined by:

1 Deriving asymptotic in this direction.

2 Computing Nf , our “positivity-guaranteeing” or final index.

3 Checking positivity for terms up to Nf .
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ACSV: A Primer

Definition

Given F (z), the singular variety V is simply the set of singularities of F .

If
F = G/H is rational, G ,H coprime, V = {z ∈ Cd : H(z) = 0}.

Example:

F (x , y) =
1

1− x − y
.

V = {(x , 1− x) : x ∈ C}.
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ACSV: A Primer

Definition

Let r ∈ Nd , F (z) =
∑

j∈Nd

fjz j a power series (either formal or convergent).

The r -diagonal of F is

∆rF (z) =
∞∑
n=0

fnrz
n.

When r = 1 we simply write ∆F for ∆rF .

Example: Delannoy Numbers:
D(m, n) = D(m − 1, n) + D(m, n − 1) + D(m − 1, n − 1),
D(m, 0) = D(0, n) = 1.

∑
(m,n)∈N2

D(m, n)xmyn
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ACSV: A Primer

Suppose we’re given a rational function in d complex variables:

F (z) =
G (z)
H(z)

, H(0) ̸= 0, G ,H coprime.

Then, F is analytic at the origin with power series:

F (z) =
∑
j∈Nd

fjz j .

By Cauchy Integral formula,

fj =
1

(2πi)d

∫
T (a)

F (z)
z j+1

dz , j ∈ Nd ,

T (a) a small product of circles.
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ACSV: A Primer

Fix a direction vector r ∈ Nd .

We wish to derive an asymptotic expansion
for the sequence (fnr )n∈N.

How ACSV works:

1 Bound the exponential growth.

2 Determine contributing singularities.

3 “Localize” Cauchy integral and compute residues.

4 Apply Saddle-point method to determine the asymptotic.
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Start with F (x , y) = 1
1−x−y

=
∑

(i ,j)∈N2

(i+j
j

)
x iy j .

So, fi ,j =
(i+j

j
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E.g.: Central binomial coefficient asymptotics

Domain of convergence for F is D = {(x , y) ∈ C2 : |x |+ |y | < 1}.

Minimal singularities for F are S = {(x , 1− x) : 0 ≤ x ≤ 1}.

Now, take r = (1, 1). Let’s derive an asymptotic for fnr =
(2n
n

)
.

First, using a theorem of Smooth ACSV...
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Asymptotics of Simple Poles

Theorem

(Smooth Asymptotics of Simple Poles):
Suppose that F = G/H admits a strictly minimal smooth critical point
w ∈ Cd

∗ in the direction r ∈ Rd
∗

such that detH ̸= 0, where H is a certain
Hessian matrix with an explicit formula. Then for any nonnegative integer
M,

fnr = w−nrn(1−d)/2 (2π)
(1−d)/2√

det(rdH)

 M∑
j=0

Cj(rdn)
−j + O

(
n−M−1

) ,

where the constants C0, ...,CM are computable.
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What do some of these terms mean?

Definition

(Smooth) critical points are solutions of
H(z) = 0,

z1Hz1(z)− zjH(z)zj = 0, 2 ≤ j ≤ d

Hzj (z) ̸= 0, for some j .

Polynomial system. Can be solved with a computer.

Intuitively: Points for which a local singularity analysis can be used.

In our case, the critical point equations become
1− x − y = 0,

x · (−1)− y · (−1) = 0,

Hy = −1 ̸= 0,

which obviously holds for σ = (1/2, 1/2).
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What do some of these terms mean?

Definition

Singularities ‘closest’ to 0 are called minimal points. That is, w is
minimal if H(w) = 0 and there is no z ∈ C
H(z) = 0 and |zj | < |wj |,∀j .

Strict minimality means no other points with the same
coordinate-wise modulus.

Intuitively: Those to which we can easily deform Cauchy integral.

In our case, already know σ = (1/2, 1/2) is minimal. Strictness is also
easy to see.
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Theorem

(Smooth Asymptotics of Simple Poles):
Suppose that F = G/H admits a strictly minimal smooth critical point
w ∈ Cd

∗ in the direction r ∈ Rd
∗ such that detH ̸= 0, where H is a certain

Hessian matrix with an explicit formula. Then for any nonnegative integer
M there exist computable constants C0, ...,CM such that
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E.g. Central Binomial Coeffs – Again

Can also show H = [2].

...Thus, plugging M=0 into the Theorem yields:

4n√
πn

(
1 + O(n−1)

)
.

There are more general theorems. □

Now, resolve “from scratch.”
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E.g.: Central binomial coefficient asymptotics

Remember the 4 steps...

1 Bound the exponential growth, ρ = lim supn→∞ |fnr |1/n .

2 Determine contributing singularities.

3 “Localize” and compute residues.

4 Apply the Saddle-point method to determine asymptotic.



E.g.: Central binomial coefficient asymptotics – STEP 1

Bound the Exponential Growth...

By Cauchy integral formula:(
2n

n

)
=

1

(2πi)2

∫
T (a,b)

1

1− x − y

dxdy

xn+1yn+1
, ∀(a, b) ∈ D.

We can bound(
2n

n

)
=

∣∣∣∣∣ 1

(2πi)2

∫
T (a,b)

1

1− x − y

dxdy

xn+1yn+1

∣∣∣∣∣ ≤ |ab|−n

1− |a| − |b|

for any |a|+ |b| < 1.

This upper bound is minimized when (a, b)→ (1/2, 1/2).

This suggests
(2n
n

)
≈ 4nS(n), where S grows subexponentially.
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E.g.: Central binomial coefficient asymptotics – STEP 2

Determine contributing singularities...

We want singularities with

1− x − y = 0 and |x | = |y | = 1/2.

This gives σ := (1/2, 1/2). We should “localize” around σ.
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E.g.: Central binomial coefficient asymptotics – STEP 3

Localize our integral and compute a residue:

Source: Melczer (2021)

I =

(
2n

n

)
=

1

(2πi)2

∫
|x |=1/2

∫
|y |=1/4

1

1− x − y

dy

yn+1

dx

xn+1
.

∀x ∈ N , |1− x | <

∣∣∣∣∣1− e iπ/4

2

∣∣∣∣∣︸ ︷︷ ︸
η

= 0.7368... and ∀x ∈ N ′, |1− x | ≥ η
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Source: Melczer (2021)

I =
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n

)
=

1

(2πi)2
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E.g.: Central binomial coefficient asymptotics – STEP 3
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1− x − y
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xn+1
.

Can show |I − Iloc | exponentially smaller than 4n.
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E.g.: Central binomial coefficient asymptotics – STEP 3
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E.g.: Central binomial coefficient asymptotics – STEP 3
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∫
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N
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=
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2πi

∫
N

dx

xn+1(1− x)n+1
+ (exp. small).
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E.g.: Central binomial coefficient asymptotics – STEP 4

Apply the Saddle-Point Method:

Parametrize N = {e iθ/2 : θ ∈ (−π/4, π/4)}, so

χ =
4n

2π

∫ π/4

−π/4
A(θ)e−nϕ(θ)dθ

where

A(θ) =
1

1− e iθ/2
= 2+2iθ−3θ2... and ϕ(θ) = log(2−e iθ)+iθ = θ2+iθ3...
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E.g.: Central binomial coefficient asymptotics – STEP 4

Next restrict our domain to a small nbd of the origin and split up the int’l:

Say Bn = n−2/5, so that whenever |θ| ≥ Bn we have |e−nϕ| ≤ e−n1/5+O(1).

∫ π/4

−π/4
Ae−nϕ =

∫ Bn

−Bn

+

∫ −Bn

−π/4
+

∫ π/4

Bn

=

∫ Bn

−Bn

A(θ)e−nϕ(θ)dθ + O(e−n1/5)

For |θ| ≤ Bn can just take Taylor expansions for A, ϕ and collect error
terms:

χ =
4n

2π

(∫ Bn

−Bn

2e−nθ2dθ

)(
1 + O(n−1/5)

)
.
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E.g.: Central binomial coefficient asymptotics – STEP 4

Make a change of variables and evaluate on (−∞,∞):∫ ∞

−∞
2e−nθ2dθ = n−1/2

∫ ∞

−∞
e−t2dt = 2

√
π/n,

...Note that ∫ ∞

Bn

e−nθ2dθ = O(e−n1/5),

...and add back the tails to get our final expression for χ.

χ =
4n

2π

(∫ ∞

−∞
2e−nθ2dθ

)(
1 + O(n−1/5)

)
=

4n√
πn

(
1 + O(n−1/5)

)
.
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Almost time for a break...

So, to reiterate:

[

0   1    2    3



To be continued...

To be continued...
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