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E.g.: Deriving closed form via GF

Fibonacci Numbers: 0,1,1,2,3,5,8,13, ...
@ Satisfy recurrence: F, = F,_1 + F,_> with Fp =0, F; = 1.

@ GOAL: Derive a closed-form expression for F,.
F(x)=x+ Z Fox"
n=2

oo
=x+ Z(an + Fp2)x"
n=2

= x + xF(x) + x*F(x).
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Thus we have X
F(x)

1 —x—x2’

2

But, roots of 1 — x — x= are —¢, —7 where

¢ = 1+2\/§ and 7:= 1_2\/5.
X
Ay
A B
_x+¢+x+7

1 ¢ 1
CVEx+T Bx+ o

Thus, we get: F, = % (" —7"). 0O
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o Let a, := # alternating permutations of size n, where a, = 0 when n
even.

oo
e FACT: a, = n!t,, where tan(z) = >_ t,z".
n=0
@ GOAL: Find asymptotic for a.
Start with Cauchy Integral formula:
1 dz tan(z)
t, = % tan(Z)ﬁ = ReSZ:() <W> .

|z|=€

T
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E.g. 2: Deriving an asymptotic

A
/thj:,)
% — K Re
e | Lt/ -« - g

Deriving an asymptotic for t,:
STEP 1: Introduce an exponentially smaller integral.

1 dz
Iy = — t —.
" 27 |z|:2 an(Z) Z”"‘1

tan(z) analytic on compact set {|z| = 2} thus bounded.

M
(2m)2ntl

tan(z)

|In| < Ien(C) - max W

|z|=2

= 2(2r) = 027"
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Deriving an asymptotic for t,:
STEP 2: Compute Residues

tan(z) tan(z) tan(z)
ln = ReSz:0 < Zn+1 ) + ReSz:ﬂ-/z (an + ReSz:,ﬂ-/z ntl

= 0(27") = tn + Res,—r > <tan(z)> + Res,—_r /o <tan(z)>

Zn+1 Zn—s—l

— = () () o

™



E.g. 2: Deriving an asymptotic

Thus we've shown



E.g. 2: Deriving an asymptotic

Thus we've shown
2 n+1
ap =2 () n! 4+ 0(27"n!)
T

when n odd.



E.g. 2: Deriving an asymptotic

Thus we've shown
2 n+1
ap =2 () n! 4+ 0(27"n!)
T

when n odd. O
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These are natural questions, but...

Decidability — Determining Asymptotics:

GF class Status
Roliond
Rational Decidable*
A\d,e\yu‘u(,
@“' Labiowd Diggonall Algebraic | Decidable*
D‘ Cate
D-Finite Open
D' A\(clt,\\vs'.L
D-Algebraic | Undecidable
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Another question...

When is (f,) positive?

Problem

Complete Positivity Problem (CPP):
Given a C-finite sequence (f,), decide if f, > 0 for all n.

It's hard!

Problem

Skolem’s Problem:

Given a C-finite sequence (f,), decide if there exists n € N such that
g = (0,

Even deciding positivity for C-finite sequences of order 6 would be
groundbreaking!
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Nevertheless...

There is a case when we can solve CPP.
/\ Iw\
3 In this case, we can:
% * @ Determine an asymptotic for f,
@ Bound other asymptotic
contributions (explicitly!).
0 © Use bound to show that
eventually f, is positive.

@ Check the first finitely many
terms.

P
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How can we generalize our problem (CPP)?
How can we extend our approach?
There are (at least) two avenues:

@ Larger GF classes...
o Multivariate!



Computing N¢ — Others’ Work

COMPUTING ERROR BOUNDS FOR ASYMPTOTIC
EXPANSIONS OF REGULAR P-RECURSIVE SEQUENCES

RUIWEN DONG, STEPHEN MELCZER, AND MARC MEZZAROBBA

ABSTRACT. Over the last several decades, improvements in the fields of ana-
lytic combinatorics and computer algebra have made determining the asymp-
totic behaviour of sequences satisfying linear recurrence relations with poly-
nomial coefficients largely a matter of routine, under assumptions that hold
often in practice. The algorithms involved typically take a sequence, encoded
by a recurrence relation and initial terms, and return the leading terms in an
asymptotic expansion up to a big-O error term. Less studied, however, are ef-
fective techniques giving an explicit bound on asymptotic error terms. Among
other things, such explicit bounds typically allow the user to automatically
prove sequence positivity (an active area of enumerative and algebraic combi-
natorics) by exhibiting an index when positive leading asymptotic behaviour
dominates any error terms.

In this article, we present a practical algorithm for computing such asymp-
totic approximations with rigorous error bounds, under the assumption that
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Generalizing The Problem...

Given a function F : C? — C which is analytic at the origin, can one
decide whether all its power series coefficients are positive?

Example

Consider

! m_n
S T N S [ E I [ B Z a(k, m, n)xky™z".

k,m,n>0

Is a(k, m, n) positive for each (k, m,n) € N3?
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o First conjectured by H. Lewy and K. Friedrichs in 1930.
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L = k m_n
Q1-x)1-y)+1-—x)(1-2)+(1-y)(1-2) _kz>oa(k,m,n)x ymz".

o First conjectured by H. Lewy and K. Friedrichs in 1930.
@ They were stumped!

@ G. Szeg6 gave a proof using "heavy machinery” from special function
theory, and remarked,
“...the tools used, however, are in no proportion to the simplicity
of the statement...” [Sze33]

@ In 1933 T. Kaluza proved it again using only elementary techniques.
[Kal33]



Some other classic results

Authors, Year Function
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Pick “key directions”

Derive asymptotics for
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Use uniformity over directions
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function to extend to
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DONE!



IDEA: Complete positivity from eventual positivity

START. |
v

Pick “key directions”
Derive asymptotics for
these directions.

Prove total positivity
in these directions
using previous idea.

@3%)

Use uniformity over directions
to extend to whole space.

Use other properties of
function to extend to
whole space.

DONE!
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IDEA: Complete positivity from eventual positivity

Suppose we're given a rational function in d complex variables:

F(z) = ZZ;, H(0) #0, G, H coprime.

F is analytic at the origin, so has power series
F(z) = Z sz.
jend

Further suppose that one could prove F has eventually positive power
series coefficients along a fixed direction r € N9,

In other words, f,, > 0 for n large enough.
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IDEA: Complete Positivity from Eventual positivity

Then, positivity of all coefficients f,, could be determined by:
@ Deriving asymptotic in this direction.
@ Computing Nf, our “positivity-guaranteeing” or final index.

© Checking positivity for terms up to Nr.
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But all this begs the question...

How does one prove asymptotic positivity?

ANSWER: Use techniques from ACSV
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Definition

Given F(z), the singular variety V is simply the set of singularities of F. If
F = G/H is rational, G, H coprime, V = {z € C : H(z) = 0}.

Example:

1

F(x,y) = 1-x—y

V={(x,1-x):x¢eC}.
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ACSV: A Primer

Let r e N9, F(z) = " f;z/ a power series (either formal or convergent).
jend
The r-diagonal of F is

ArF(Z) = Z f,-,,—Zn.
n=0

When r = 1 we simply write AF for A, F.

Example: Delannoy Numbers:
D(m,n)=D(m—1,n)+ D(m,n—1)+ D(m—1,n—-1),
D(m,0) = D(0,n) = 1.

m
n

o 1 2 3 a 5 6 7 8
1 1 1 1 1 1 1
Z m m,,n
- 7 9 11 13 15 17 D( ) n)X y
13 25 41 61 85 113 145
(m,n)EN?2
377 575 833
41 129 321 681 1289 2241 3649

61 231 681 1683 3653 7183 13073
g 277 1980 3IFEEI | ROKG 10875 ANOR1

mm..u.qﬂc
a e ol [ o e
28] o |wlalo]e

3

3

3

]
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ACSV: A Primer

Suppose we're given a rational function in d complex variables:

F(z) = 523, H(0) #0, G, H coprime.

Then, F is analytic at the origin with power series:
F(z) = Z fiz).
jeNd

By Cauchy Integral formula,

T(a) a small product of circles.
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ACSV: A Primer

Fix a direction vector r € N¢. We wish to derive an asymptotic expansion
for the sequence (fpr)nen-

How ACSV works:
@ Bound the exponential growth.
@ Determine contributing singularities.
© “Localize” Cauchy integral and compute residues.
@ Apply Saddle-point method to determine the asymptotic.
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Start with F(x,y) = —— = > ("¥)xy/.

T
<

So. 1= ().
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E.g.. Central binomial coefficient asymptotics

Domain of convergence for F is D = {(x,y) € C?: |x| + |y| < 1}.
Minimal singularities for F are S = {(x,1 —x):0 < x < 1}.

Now, take r = (1,1). Let’s derive an asymptotic for f,, = (2”)

nl-

First, using a theorem of Smooth ACSV...
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(Smooth Asymptotics of Simple Poles):

Suppose that F = G/H admits a strictly minimal smooth critical point

w € CY in the direction r € RY such that detH # 0, where H is a certain
Hessian matrix with an explicit formula. Then for any nonnegative integer
M,

M
for = w (1= d)/2 Z Ci(rgn) j+ 0 <n_M_1> ,

\/det(rdH =




Asymptotics of Simple Poles

(Smooth Asymptotics of Simple Poles):
Suppose that F = G/H admits a strictly minimal smooth critical point
w € CY in the direction r € RY such that detH # 0, where H is a certain

Hessian matrix with an explicit formula. Then for any nonnegative integer
MI

(2m)a-a)/2 (M

/det(rgH) =

where the constants Cy, ..., Cyy are computable.

for = W—nrn(l—d)/2
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@ Polynomial system. Can be solved with a computer.

@ Intuitively: Points for which a local singularity analysis can be used.



What do some of these terms mean?

(Smooth) critical points are solutions of

H(z) = 0.
ZlHZl(z) - ZjH(z)Zj =0,2<,<d
H,(z) # 0, for some j.

@ Polynomial system. Can be solved with a computer.
@ Intuitively: Points for which a local singularity analysis can be used.
In our case, the critical point equations become

1-x—y=0,
x- (1) —y-(-1)=0,
H, = -1 #0,

which obviously holds for o = (1/2,1/2).
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What do some of these terms mean?

Definition

Singularities ‘closest’ to 0 are called minimal points. That is, w is
minimal if Hlw) =0 and there is no z € C
H(z) = 0 and |z| < |w;|,V].

@ Strict minimality means no other points with the same
coordinate-wise modulus.

@ Intuitively: Those to which we can easily deform Cauchy integral.

In our case, already know o = (1/2,1/2) is minimal. Strictness is also
easy to see.



(Smooth Asymptotics of Simple Poles):

Suppose that F = G/H admits a strictly minimal smooth critical point

w € C? in the direction r € RY such that detH # 0, where H is a certain
Hessian matrix with an explicit formula. Then for any nonnegative integer
M there exist computable constants Cy, ..., Cpy such that
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E.g. Central Binomial Coeffs — Again

Can also show H = [2].

... Thus, plugging M=0 into the Theorem yields:
4n
VN

There are more general theorems. [J

(1+0(n™h).

Now, resolve “from scratch.”



E.g.. Central binomial coefficient asymptotics

Remember the 4 steps...
© Bound the exponential growth, p = limsup, . |far|/" .
© Determine contributing singularities.
© ‘“Localize” and compute residues.

@ Apply the Saddle-point method to determine asymptotic.
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E.g.: Central binomial coefficient asymptotics — STEP 1

Bound the Exponential Growth...

o By Cauchy integral formula:

2n 1 1 dxdy
(7) =@ o oy Mnen

@ We can bound

2n\
)=
for any |a| + |b| < 1.

@ This upper bound is minimized when (a, b) — (1/2,1/2).
@ This suggests (2n”) ~ 4"S(n), where S grows subexponentially.

1 / 1 dxdy < lab|~"
(2mi)? Jr(ap) L —x —y xm Tyt = 1 —Ja| — |b|
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E.g.: Central binomial coefficient asymptotics — STEP 2

Determine contributing singularities...

@ We want singularities with
l1-x—y=0 and |x|=]|y|=1/2.

e This gives 0 :=(1/2,1/2). We should “localize” around o.
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E.g.: Central binomial coefficient asymptotics — STEP 3

Localize our integral and compute a residue:

N

Source: Melczer (2021)

| <2n> 1 / / 1 dy dx
n (271)? Jixj=1/2 Jjy|=1/a 1 — x — y y" T X0t

im/4
Vx €N, |1 - x| < 1—“"2 = 0.7368... and Vx © A7, [1— x| >
—_———

n
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Now consider

P 1 / / 1 dy dx
0T @i Sy Jiyjmrja 1= x — y yr T xnt

Can show |/ — Ijpc| exponentially smaller than 4”.
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[ 1 / / 1 dy dx
@) Iy Syima L= x —y ymLxn

Can show |/oyt| exponentially smaller than 4”.
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E.g.: Central binomial coefficient asymptotics — STEP 3

2n
< > IIOC o IOUt T (l IIOC) + /Out
n N——

X

(27”)2/ </y 1/4_/.y|3/4>  (exp. small)

1
/ (Resy—1—x) dx + (exp. small)
271' N

1

= 2mi /NXnJrl 1— x)m + (exp. small).
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E.g.: Central binomial coefficient asymptotics — STEP 4

Apply the Saddle-Point Method:
Parametrize N = {e/2 : § € (—7/4,7/4)}, so

X= 4 A(9)e ") dg
27 /4
where
A(9) = o 012i0-30%.. and #(0) = log(2—e")+i6 = 62 +i63...
1—ei?/2
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Next restrict our domain to a small nbd of the origin and split up the int'l:
Say B, = n=2/5, so that whenever || > B, we have [e"?| < e—/*+0(1).

w/4 B, —Bn w/4
s o]
—7/4 —Bn —7/4 "
Bn 1/5

_ / AB)e "D db 4+ O(e ")

-B,

For |#| < B, can just take Taylor expansions for A, ¢ and collect error

terms: B
= ([e) (o).
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Make a change of variables and evaluate on (—00, 00):

/ 2e " dg = nl/z/ e dt =2y m/n,
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...Note that
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By



E.g.: Central binomial coefficient asymptotics — STEP 4

Make a change of variables and evaluate on (—00, 00):
oo 6> 12 [ 2
/ 2e " dh = n~Y/ / e dt =2+/7/n,
—o0 —00

...Note that

/ e dg = 0(e "),

n

...and add back the tails to get our final expression for x.

v () (o) = (1 00).

o0



Almost time for a break...

So, to reiterate:

START.
v

Pick “key directions”

Derive asymptotics for
these directions.

Prove total positivity
in these directions
using previous idea.

Use uniformity over directions

Use other properties of
to extend to whole space.

function to extend to
whole space.

DONE!

N

I

n



To be continued...

To be continued...



@ Th Kaluza.

Elementarer beweis einer vermutung von k. friedrichs und h. lewy.
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[§ G. Szegs.
Uber gewisse potenzreihen mit lauter positiven koeffizienten.
Mathematische Zeitschrift, 37(1):674-688, Dec 1933.



	Analytic Combinatorics and Positivity
	Analytic Combinatorics
	History / Classical Positivity

	Complete Positivity via Eventual positivity
	ACSV
	The basics
	An example (from scratch)
	...And again. (Plus key results in the smooth theory)


