Coefficient Positivity and Analytic Combinatorics

John Hunn Smith

Supervisors: Rafael Oliveira, Stephen Melczer

Alg & Enum Comb Seminar

Table of Contents

- 'Recall...'
- 2 Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- Computer Analysis
- 6 Future Work

Table of Contents

- 1 'Recall...'
- Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- 4 Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- Computer Analysis
- 6 Future Work

'Recall'...

Proving total positivity of a sequence from eventual positivity:

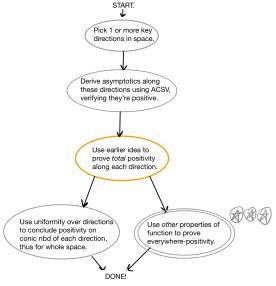


Table of Contents

- 1 'Recall...'
- 2 Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- 4 Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- Computer Analysis
- 6 Future Work

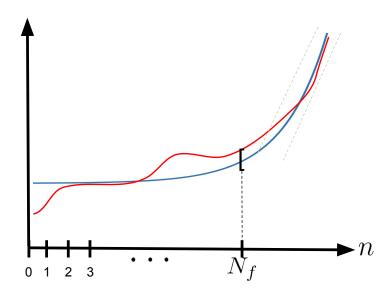
INPUT:

- a rational function F = G/H in d variables
- ullet a direction vector $oldsymbol{r} \in \mathbb{N}^d$. Here we always take $oldsymbol{r} = oldsymbol{1} := (1,1,...,1)$.

ASSUMING:

- G, H coprime
- $H(0) \neq 0$
- V = V(H) smooth
- F admits a nondegenerate strictly minimal smooth critical point $\mathbf{w} \in \mathbb{C}^d_*$.
- The coefficients f_{nr} are eventually positive.

OUTPUT: An $N_f \in \mathbb{N}$ such that $\forall n \geq N_f$, $f_{nr} > 0$.



PROCEDURE:

- Verify that our set of assumptions hold for our inputs.
- Q Run the smooth ACSV procedure on our inputs, obtaining:
 - a complex multivariate saddle point integral $\chi(n)$.
 - a function $\lambda(n)$ such that $\chi(n)$ (hence f_{nr}) is asymptotically equivalent to $\lambda(n)$.
- **③** Compute numbers $\tau \in (0, |\mathbf{w}^{-\mathbf{r}}|)$ and c > 0 such that $|f_{n\mathbf{r}} \chi| < c\tau^n$ for all $n \in \mathbb{Z}_+$.
- **3** Show that there exists an $L \in \mathbb{Z}_+$ such that $|\chi \lambda| \le \lambda c\tau^n$, for all n > L.
- **1** This $L = N_f$. Output it.

DONE.

• Step 3 works because of

Lemma 5.1 If F admits a strictly minimal smooth contributing point $\mathbf{w} \in \mathbb{C}^d_*$ in the direction $\mathbf{r} \in \mathbb{R}^d_*$ then $|f_{n\mathbf{r}} - \chi| = O(\tau^n)$ for some $\tau < |\mathbf{w}^{-\mathbf{r}}|$.

Step 3 works because of

Lemma 5.1 If F admits a strictly minimal smooth contributing point $\mathbf{w} \in \mathbb{C}^d_*$ in the direction $\mathbf{r} \in \mathbb{R}^d_*$ then $|f_{n\mathbf{r}} - \chi| = O(\tau^n)$ for some $\tau < |\mathbf{w}^{-\mathbf{r}}|$.

• Step 4 works because $c\tau^n$ is exponentially smaller than our λ growth rate, and positivity follows from triangle inequality.

Table of Contents

- 1 'Recall...'
- Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- 4 Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- Computer Analysis
- 6 Future Work

Bivariate Case

We consider functions $F: \mathbb{C}^2 \to \mathbb{C}$ of the form

$$F(x,y) = \frac{1}{1 - ax - by + cxy}, \quad a,b \ge c > 1.$$

• Why? Because it's "easy..."

Bivariate Case

We consider functions $F: \mathbb{C}^2 \to \mathbb{C}$ of the form

$$F(x,y) = \frac{1}{1 - ax - by + cxy}, \quad a,b \ge c > 1.$$

- Why? Because it's "easy..."
- ...But still of practical and academic interest:
 - DeVries, Van der Hoeven, Pemantle (2012)
 - Pemantle & Wilson (2008)
 - Straub & Zudilin (2015)

Bound for family of bivariate functions:

Computation

Let $F: \mathbb{C}^2 \to \mathbb{C}$ be defined by

$$F(x,y) = \frac{1}{1 - ax - by + cxy}, \quad a, b \ge c > 1.$$

Put

$$\mathbf{w} = (w_1, w_2) := \frac{ab - \sqrt{(ab)^2 - abc}}{ac} \left(1, \frac{a}{b}\right).$$

To prove positivity of the diagonal coefficients of F it suffices to check the first N_f terms for positivity, where N_f is given by the formula...

Bound for family of bivariate functions:

Computation

$$N_f = \max \left\{ N_2, \lceil \delta^{\frac{-1}{\alpha}} \rceil, \left\lceil \left(\frac{c_0}{\mu} \right)^{1/(3\alpha - 1)} \right\rceil, \tilde{N}, \left\lceil \left(\frac{c_{16}}{\epsilon} \right)^{1/(3\alpha - 1)} \right\rceil, N \right\}$$

where

- $0 < \delta < \min \{ w_2, \pi/2, \frac{1}{2} \ln(b/(cw_1)) \}$
- $0 < \epsilon < 1$, $\mu > 0$, and
- $\alpha \in \mathbb{Q} \cap (1/3, 1/2)$

are freely chosen parameters, and constants N_2 , c_0 , \tilde{N} , c_{16} , and N are obtained effectively in the derivation.

Take a = 3, b = 4, c = 3.

Take
$$a = 3, b = 4, c = 3$$
. So, $F(x, y) = \frac{1}{1 - 3x - 4y + 3xy}$.

Take
$$a = 3, b = 4, c = 3$$
. So, $F(x, y) = \frac{1}{1 - 3x - 4y + 3xy}$.

The first few entries in $\Delta \emph{F}\mbox{'s}$ coefficient sequence are

$$1, 21, 667, 22869, 836001, \dots$$

Take
$$a = 3, b = 4, c = 3$$
. So, $F(x, y) = \frac{1}{1 - 3x - 4y + 3xy}$.

The first few entries in ΔF 's coefficient sequence are

$$1, 21, 667, 22869, 836001, \dots$$

Running our procedure above on this F with parameter values

•
$$\delta = \frac{1}{2} \min(w_2, \pi/2, \log(\sqrt{\frac{b}{cw_1}})) = w_2/2$$

- $\epsilon = 1/2$
- $\alpha = 2/5$
- $\mu = 1/2$

yields an index of:

Take
$$a = 3$$
, $b = 4$, $c = 3$. So, $F(x, y) = \frac{1}{1 - 3x - 4y + 3xy}$. The first few entries in ΔF 's coefficient sequence are

·

$$1, 21, 667, 22869, 836001, \dots$$

Running our procedure above on this F with parameter values

•
$$\delta = \frac{1}{2} \min(w_2, \pi/2, \log(\sqrt{\frac{b}{cw_1}})) = w_2/2$$

- $\epsilon = 1/2$
- $\alpha = 2/5$
- $\mu = 1/2$

yields an index of: $N_f = 1307$.

Bound for family of bivariate functions:

In the special case when a=b, we also have the following corollary:

Corollary

Let F be as above with a = b > c > 1. Then, to prove positivity of all of F's power series coefficients, in any direction, it suffices to check the first N_f terms along the diagonal.

Bound for family of bivariate functions:

In the special case when a=b, we also have the following corollary:

Corollary

Let F be as above with a = b > c > 1. Then, to prove positivity of all of F's power series coefficients, in any direction, it suffices to check the first N_f terms along the diagonal.

Proof: Follows from a result of Straub and Zudilin from 2015.

GRZ Case

Fix an integer $d \geq 4$. We consider the function $F_{d!,d}: \mathbb{C}^d \to \mathbb{C}$ defined by

$$F_{d!,d}(\mathbf{z}) = \frac{1}{1-z_1\cdots-z_d+d!z_1\cdots\cdots z_d}, \quad \forall \mathbf{z}.$$

• Originally from Gillis, Reznick and Zeilberger's (1983). The authors considered:

$$F_{c,d}(x_1,...,x_d) = \frac{1}{1-x_1-\cdots-x_d+cx_1\cdots x_d}.$$

GRZ Case

Fix an integer $d \geq 4$. We consider the function $F_{d!,d}: \mathbb{C}^d \to \mathbb{C}$ defined by

$$F_{d!,d}(\mathbf{z}) = \frac{1}{1-z_1\cdots-z_d+d!z_1\cdots\cdots z_d}, \quad \forall \mathbf{z}.$$

 Originally from Gillis, Reznick and Zeilberger's (1983). The authors considered:

$$F_{c,d}(x_1,...,x_d) = \frac{1}{1-x_1-\cdots-x_d+cx_1\cdots x_d}.$$

Conjecture (GRZ)

For any $d \ge 4$, all coefficients of $F_{d!,d}$ are nonnegative.

This has already been shown...

Positivity of the Rational Function of Gillis, Reznick and

Zeilberger

Yaming Yu

Department of Statistics University of California Irvine, CA 92697, USA yamingy@uci.edu

Abstract

We prove that the power series expansion of the rational function of Gillis, Reznick and Zeilberger (1983) has only nonnegative coefficients.

Reproof using our method

- For $d \ge 4$, GRZ stated that nonnegativity of $F_{d!,d}$ is implied by nonnegativity of $\Delta F_{d!,d}$.
- Thus to prove conjecture, suffices to prove positivity of diagonal!

Reproof using our method

- For $d \ge 4$, GRZ stated that nonnegativity of $F_{d!,d}$ is implied by nonnegativity of $\Delta F_{d!,d}$.
- Thus to prove conjecture, suffices to prove positivity of diagonal!

This looks like a job for our method.

Bound for GRZ function:

Computation

Let $d \geq 4$ be an integer. Let $F_{d!,d}: \mathbb{C}^d \to \mathbb{C}$ be defined by

$$F_{d!,d}(\mathbf{z}) = \frac{1}{1 - z_1 \cdots - z_d + d! z_1 \cdots z_d}, \quad \forall \mathbf{z} \in \mathbb{C}^d.$$

To prove positivity of the diagonal coefficients of $F_{d!,d}$ it suffices to check the first N_f terms for positivity, where N_f is given by the formula...

Bound for GRZ function:

Computation

$$N_f = \max \left\{ N_2, N_{16}, \tilde{N}, \left\lceil \left(rac{c_{18}}{\epsilon}
ight)^{1/(3lpha-1)}
ight
ceil, N
ight\}$$

with the freely chosen parameters:

- $\delta \in (0, \frac{1}{(d-1)^{d-1}})$, chosen so that $\frac{1}{\rho \cdot (d-1)} 1 \ge |e^{2\delta 1}|$, (ρ being the unique real root of a certain polynomial,
- $0 < \epsilon, \tilde{\epsilon} < 1$
- $\alpha \in (1/3, 1/2) \cap \mathbb{Q}$
- $\mu > 0$,

along with the constants N_{16} , c_{18} , N, \tilde{N} and N_2 which can be computed (mostly) effectively as described in the derivation.

For d = 4 and the following choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 4/10$
- $\mu = 1$
- $\delta = 4/100$

...we end up with

For d = 4 and the following choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 4/10$
- $\mu = 1$
- $\delta = 4/100$

...we end up with $N_f=206271359 \propto 10^8. \label{eq:Nf}$

For d = 4 and a *different* choice of parameters:

- \bullet $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 3/8$
- \bullet $\mu = 1$
- $\delta = 4/100$

...we end up with

For d = 4 and a *different* choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 3/8$
- $\mu = 1$
- \bullet $\delta = 4/100$

...we end up with $N_f=908295 \propto 10^6. \label{eq:Nf}$

For d = 4 and a *different* choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 3/8$
- \bullet $\mu = 1$
- $\delta = 4/100$

...we end up with $N_f=908295 \propto 10^6. \label{eq:Nf}$

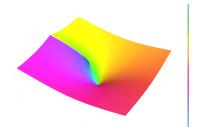
This may seem prohibitively large, but... stay tuned. :)

Table of Contents

- 1 'Recall...'
- Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- 6 Computer Analysis
- 6 Future Work

Product Log / Lambert W-function

• Multivalued function, with branch $W_k(z)$ for each $k \in \mathbb{Z}$.



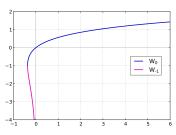
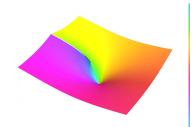


Image credits: Wikipedia.

Product Log / Lambert W-function

- Multivalued function, with branch $W_k(z)$ for each $k \in \mathbb{Z}$.
- For any $z, w \in \mathbb{C}$, $we^w = z \iff W_k(z) = w$ for some k.



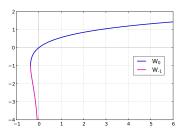
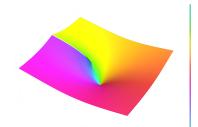


Image credits: Wikipedia.

Product Log / Lambert W-function

- Multivalued function, with branch $W_k(z)$ for each $k \in \mathbb{Z}$.
- For any $z, w \in \mathbb{C}$, $we^w = z \iff W_k(z) = w$ for some k.
- For real numbers, W_0 and W_{-1} suffice. (See pic at right!)



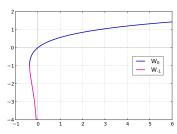


Image credits: Wikipedia.

Lemma

Calculation involving the Product Log:

Let \mathcal{H} be a positive real, α a rational strictly between 1/3 and 1/2. Then, there exists positive $N \in \mathbb{Z}$ such that

$$e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} < n^{\frac{1}{2}-3\alpha}$$

for all n > N.

Proof idea:

• We know that $e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} < n^{\frac{1}{2}-3\alpha}$ eventually.

Lemma

Calculation involving the Product Log:

Let \mathcal{H} be a positive real, α a rational strictly between 1/3 and 1/2. Then, there exists positive $N \in \mathbb{Z}$ such that

$$e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} < n^{\frac{1}{2}-3\alpha}$$

for all n > N.

- We know that $e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} < n^{\frac{1}{2}-3\alpha}$ eventually.
- Find largest real solution of $e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}}=n^{\frac{1}{2}-3\alpha}$ using Product Log. Solution candidates are:

$$\left[\frac{6\alpha-1}{2\alpha-1}W_0\left(\frac{2\alpha-1}{6\alpha-1}\mathcal{H}\right)\right]^{1/(1-2\alpha)}, \left[\frac{6\alpha-1}{2\alpha-1}W_{-1}\left(\frac{2\alpha-1}{6\alpha-1}\mathcal{H}\right)\right]^{1/(1-2\alpha)}$$

Lemma

Calculation involving the Product Log:

Let \mathcal{H} be a positive real, α a rational strictly between 1/3 and 1/2. Then, there exists positive $N \in \mathbb{Z}$ such that

$$e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} < n^{\frac{1}{2}-3\alpha}$$

for all n > N.

Proof idea:

- We know that $e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} < n^{\frac{1}{2}-3\alpha}$ eventually.
 - Find largest real solution of $e^{-\frac{\mathcal{H}}{2}n^{1-2\alpha}} = n^{\frac{1}{2}-3\alpha}$ using Product Log. Solution candidates are:

$$\left[\frac{6\alpha-1}{2\alpha-1} \mathcal{W}_0\left(\frac{2\alpha-1}{6\alpha-1}\mathcal{H}\right)\right]^{1/(1-2\alpha)}, \left[\frac{6\alpha-1}{2\alpha-1} \mathcal{W}_{-1}\left(\frac{2\alpha-1}{6\alpha-1}\mathcal{H}\right)\right]^{1/(1-2\alpha)}$$

• If none exists, take N=1. \square

Lemma

Comparing $c\tau^n$ and $\lambda(n)$:

Let c, D > 0, $\mathbf{w} = (w_1, ... w_d) \in \mathbb{C}^d_*$ and $0 < \tau < |w_1|^{-1} \cdot ... \cdot |w_d|^{-1}$.

Then, there exists positive $N \in \mathbb{Z}$ such that

$$c\tau^n < D|w_1 \cdot ... \cdot w_d|^{-n} n^{(1-d)/2}$$
.

for all n > N.

Proof idea:

• We know such N exists; we just have to find it.

Lemma

Comparing $c\tau^n$ and $\lambda(n)$:

Let c, D > 0, $\mathbf{w} = (w_1, ... w_d) \in \mathbb{C}^d_*$ and $0 < \tau < |w_1|^{-1} \cdot ... \cdot |w_d|^{-1}$.

Then, there exists positive $N \in \mathbb{Z}$ such that

$$c\tau^n < D|w_1 \cdot \ldots \cdot w_d|^{-n} n^{(1-d)/2}.$$

for all n > N.

- We know such N exists; we just have to find it.
- Split into cases on d's congruence mod 4.

Lemma

Comparing $c\tau^n$ and $\lambda(n)$:

Let c, D > 0, $\mathbf{w} = (w_1, ... w_d) \in \mathbb{C}^d_*$ and $0 < \tau < |w_1|^{-1} \cdot ... \cdot |w_d|^{-1}$.

Then, there exists positive $N \in \mathbb{Z}$ such that

$$c\tau^n < D|w_1 \cdot \ldots \cdot w_d|^{-n} n^{(1-d)/2}.$$

for all n > N.

- We know such N exists; we just have to find it.
- Split into cases on d's congruence mod 4.
- In each case, compute real (d-1)/2th roots to see which product log branches are active for that root.

Lemma

Comparing $c\tau^n$ and $\lambda(n)$:

Let c, D > 0, $\mathbf{w} = (w_1, ... w_d) \in \mathbb{C}^d_*$ and $0 < \tau < |w_1|^{-1} \cdot ... \cdot |w_d|^{-1}$. Then, there exists positive $N \in \mathbb{Z}$ such that

$$c\tau^n < D|w_1 \cdot \ldots \cdot w_d|^{-n} n^{(1-d)/2}.$$

for all n > N.

- We know such N exists; we just have to find it.
- Split into cases on d's congruence mod 4.
- In each case, compute real (d-1)/2th roots to see which product log branches are active for that root.
- Solve equations for each active branch. Take max to get solution.

Lemma

Comparing $c\tau^n$ and $\lambda(n)$:

Let c, D > 0, $\mathbf{w} = (w_1, ... w_d) \in \mathbb{C}^d_*$ and $0 < \tau < |w_1|^{-1} \cdot ... \cdot |w_d|^{-1}$. Then, there exists positive $N \in \mathbb{Z}$ such that

$$c\tau^n < D|w_1 \cdot ... \cdot w_d|^{-n} n^{(1-d)/2}$$
.

for all n > N.

- We know such N exists; we just have to find it.
- Split into cases on d's congruence mod 4.
- In each case, compute real (d-1)/2th roots to see which product log branches are active for that root.
- Solve equations for each active branch. Take max to get solution.
- If none are active, just take N = 1. \square .

Always remember the steps in our Method... $% \label{eq:control_eq} % \label{$

INPUT:

- a rational function F = G/H in d variables
- ullet a direction vector $oldsymbol{r} \in \mathbb{N}^d.$ Here we always take $oldsymbol{r} = oldsymbol{1} := (1,1,...,1).$

ASSUMING:

- G, H coprime
- $H(0) \neq 0$
- V = V(H) smooth
- F admits a nondegenerate strictly minimal smooth critical point $\mathbf{w} \in \mathbb{C}^d_*$.
- The coefficients f_{nr} are eventually positive.

OUTPUT: An $N_f \in \mathbb{N}$ such that $\forall n \geq N_f$, $f_{nr} > 0$.

PROCEDURE:

- Verify that our set of assumptions hold for our inputs.
- Run the smooth ACSV procedure on our inputs, obtaining:
 - a complex multivariate saddle point integral $\chi(n)$.
 - a function $\lambda(n)$ such that $\chi(n)$ (hence f_{nr}) is asymptotically equivalent to $\lambda(n)$.
- **3** Compute numbers $\tau \in (0, |\mathbf{w}^{-\mathbf{r}}|)$ and c > 0 such that $|f_{n\mathbf{r}} \chi| < c\tau^n$ for all $n \in \mathbb{Z}_+$.
- **③** Show that there exists an $L \in \mathbb{Z}_+$ such that $|\chi \lambda| \le \lambda c\tau^n$, for all $n \ge L$.
- **5** This $L = N_f$. Output it.

DONE.

Bivariate Bound – STEP 1: Verify Assumptions

$$F(x,y) = \frac{1}{1 - ax - by + cxy}, \quad a,b \ge c > 1.$$

ullet $\mathcal V$ is set of zeros of denominator:

$$\mathcal{V} = \left\{ (x, y) \in \mathbb{C}^2 : x \neq \frac{b}{c} \text{ and } y = \frac{ax - 1}{cx - b} \right\}.$$

- $\mathcal V$ is smooth, as $H_x=-a+cy$, $H_y=-b+cx$, so if $(x,y)\in \mathcal V$ then $H_y\neq 0$.
- Determine crit(1) by solving

$$\begin{cases} H(\mathbf{w}) = 0 \\ w_1 H_{z_1}(\mathbf{w}) - w_j H_{z_j}(\mathbf{w}) = 0, \quad 2 \le j \le d \end{cases}.$$

Bivariate Bound – STEP 1: Verify Assumptions

See that

$$\mathbf{w} = (w_1, w_2) := \frac{ab - \sqrt{(ab)^2 - abc}}{ac} \left(1, \frac{a}{b}\right) \in \operatorname{crit}(\mathbf{1})$$

is *minimal* by showing that for no $\mathbf{v} \in \mathcal{V}$ is $|\mathbf{v}| = t|\mathbf{w}|$, for some $t \in (0,1)$.

- Minimality of w is also strict.
- ullet Nondegeneracy of $oldsymbol{w}$ follows from ${\cal H}$ matrix formula.

Bivariate Bound – STEP 1: Verify Assumptions

See that

$$\mathbf{w} = (w_1, w_2) := \frac{ab - \sqrt{(ab)^2 - abc}}{ac} \left(1, \frac{a}{b}\right) \in \operatorname{crit}(\mathbf{1})$$

is *minimal* by showing that for no $\mathbf{v} \in \mathcal{V}$ is $|\mathbf{v}| = t|\mathbf{w}|$, for some $t \in (0,1)$.

- Minimality of w is also strict.
- ullet Nondegeneracy of $oldsymbol{w}$ follows from ${\cal H}$ matrix formula.

By Theorem 5.2 of [Mel21] we obtain

$$f_{n1} = \frac{(w_1 w_2)^{-n}}{\sqrt{2\pi n}} \cdot \frac{1}{\sqrt{\det(\mathcal{H})} w_2(b - cw_1)} (1 + O(1/n)),$$

where \mathcal{H} is the matrix obtained in Lemma 5.5.

PROCEDURE:

- Verify that our set of assumptions hold for our inputs.
- Run the smooth ACSV procedure on our inputs, obtaining:
 - a complex multivariate saddle point integral $\chi(n)$.
 - a function $\lambda(n)$ such that $\chi(n)$ (hence f_{nr}) is asymptotically equivalent to $\lambda(n)$.
- **3** Compute numbers $\tau \in (0, |\mathbf{w}^{-\mathbf{r}}|)$ and c > 0 such that $|f_{n\mathbf{r}} \chi| < c\tau^n$ for all $n \in \mathbb{Z}_+$.
- **③** Show that there exists an $L \in \mathbb{Z}_+$ such that $|\chi \lambda| \le \lambda c\tau^n$, for all $n \ge L$.
- **5** This $L = N_f$. Output it.

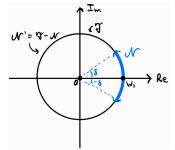
DONE.

$$\bullet \ \mathsf{Call} \ \lambda(n) := \tfrac{(w_1 w_2)^{-n}}{\sqrt{2\pi n}} \cdot \tfrac{1}{\sqrt{\det(\mathcal{H})} w_2(b - cw_1)}.$$

- $\bullet \ \mathsf{Call} \ \lambda(n) := \frac{(w_1 w_2)^{-n}}{\sqrt{2\pi n}} \cdot \frac{1}{\sqrt{\det(\mathcal{H})} w_2(b cw_1)}.$
- To find χ , we let

$$\delta < \min \left\{ w_2, \pi/2, \frac{1}{2} \ln(b/(cw_1)) \right\}$$

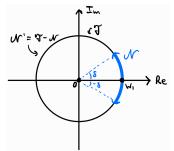
and then introduce $\mathcal{T} = \mathcal{T}(\mathbf{w}_1)$, $\mathcal{N}, \mathcal{N}'$:



- $\bullet \ \mathsf{Call} \ \lambda(n) := \frac{(w_1 w_2)^{-n}}{\sqrt{2\pi n}} \cdot \frac{1}{\sqrt{\det(\mathcal{H})} w_2(b cw_1)}.$
- To find χ , we let

$$\delta < \min \left\{ w_2, \pi/2, \frac{1}{2} \ln(b/(cw_1)) \right\}$$

and then introduce $\mathcal{T} = \mathcal{T}(\mathbf{w}_1)$, $\mathcal{N}, \mathcal{N}'$:



Also define $g: \mathcal{N} \to \mathbb{C}$, $g(x) := \frac{ax-1}{cx-b}$.

• Then, we need to verify *explicitly* that this $\delta, \mathcal{T}, \mathcal{N}, g$ allow us to perform a local singularity analysis.

- Then, we need to verify *explicitly* that this $\delta, \mathcal{T}, \mathcal{N}, g$ allow us to perform a local singularity analysis.
- Specifically, we need $\eta, \zeta > 0$ such that
 - $|g(\hat{\mathbf{z}})| \leq \eta < w_2 + \delta$ for $\hat{\mathbf{z}} \in \mathcal{N}$,
 - $w_2 < \zeta \leq |g(\hat{\pmb{z}})|$ for $\hat{\pmb{z}} \in \mathcal{N}'$.

- Then, we need to verify *explicitly* that this δ , \mathcal{T} , \mathcal{N} , g allow us to perform a local singularity analysis.
- Specifically, we need $\eta, \zeta > 0$ such that
 - $|g(\hat{\mathbf{z}})| \leq \eta < w_2 + \delta$ for $\hat{\mathbf{z}} \in \mathcal{N}$,
 - $w_2 < \zeta \le |g(\hat{\pmb{z}})|$ for $\hat{\pmb{z}} \in \mathcal{N}'$.
- Ultimately, this reduces to optimizing $h(\hat{z}) := |g(\hat{z})|$ on $\mathcal{N}, \mathcal{N}'$.

- Then, we need to verify *explicitly* that this δ , \mathcal{T} , \mathcal{N} , g allow us to perform a local singularity analysis.
- Specifically, we need $\eta, \zeta > 0$ such that
 - $|g(\hat{\mathbf{z}})| \leq \eta < w_2 + \delta$ for $\hat{\mathbf{z}} \in \mathcal{N}$,
 - $w_2 < \zeta \le |g(\hat{z})|$ for $\hat{z} \in \mathcal{N}'$.
- Ultimately, this reduces to optimizing $h(\hat{z}) := |g(\hat{z})|$ on $\mathcal{N}, \mathcal{N}'$.
- We find that $\eta, \zeta := h(\delta)$ works.

The rest of this is in a similar vein to the example...

• Introduce the integrals $I, I_{loc}, I_{out}, \chi := I_{loc} - I_{out}$ to compute residues.

The rest of this is in a similar vein to the example...

- Introduce the integrals I, I_{loc} , I_{out} , $\chi := I_{loc} I_{out}$ to compute residues.
- Show (explicitly) that $|I I_{loc}|$ and $|I_{out}|$ grow exponentially smaller than λ .

The rest of this is in a similar vein to the example...

- Introduce the integrals I, I_{loc} , I_{out} , $\chi := I_{loc} I_{out}$ to compute residues.
- Show (explicitly) that $|I I_{loc}|$ and $|I_{out}|$ grow exponentially smaller than λ .
- Combine bounds to obtain c, τ such that

$$|f_{n1} - \chi| < c\tau^n$$
.

PROCEDURE:

- Verify that our set of assumptions hold for our inputs.
- Run the smooth ACSV procedure on our inputs, obtaining:
 - a complex multivariate saddle point integral $\chi(n)$.
 - a function $\lambda(n)$ such that $\chi(n)$ (hence f_{nr}) is asymptotically equivalent to $\lambda(n)$.
- **③** Compute numbers $\tau \in (0, |\mathbf{w}^{-\mathbf{r}}|)$ and c > 0 such that $|f_{n\mathbf{r}} \chi| < c\tau^n$ for all $n \in \mathbb{Z}_+$.
- **③** Show that there exists an $L \in \mathbb{Z}_+$ such that $|\chi \lambda| \le \lambda c\tau^n$, for all $n \ge L$.
- **5** This $L = N_f$. Output it.

DONE.

Basically the same analysis as the example... $% \label{eq:continuous} % \lab$

Basically the same analysis as the example... ... except that we replace all $O(\cdot)$'s with *explicit error bounds*.

Main steps in our analysis:

• Parametrize \mathcal{N} . Write residue χ as a parametrized integral, identifying $A(\theta), \phi(\theta)$:

$$\chi = \frac{(w_1 w_2)^{-n}}{2\pi} \int_{-\delta}^{\delta} A(\theta) e^{-n\phi(\theta)} d\theta$$

Main steps in our analysis:

• Parametrize $\mathcal{N}.$ Write residue χ as a parametrized integral, identifying $A(\theta), \phi(\theta)$:

$$\chi = \frac{(w_1 w_2)^{-n}}{2\pi} \int_{-\delta}^{\delta} A(\theta) e^{-n\phi(\theta)} d\theta$$

• Take Taylor series expansion of A, ϕ around 0. Use it to bound error for $e^{-n\phi}, A$ both inside and outside ball of radius $B_n := n^{-\alpha}$.

Main steps in our analysis:

• Parametrize $\mathcal{N}.$ Write residue χ as a parametrized integral, identifying $A(\theta), \phi(\theta)$:

$$\chi = \frac{(w_1 w_2)^{-n}}{2\pi} \int_{-\delta}^{\delta} A(\theta) e^{-n\phi(\theta)} d\theta$$

- Take Taylor series expansion of A, ϕ around 0. Use it to bound error for $e^{-n\phi}, A$ both inside and outside ball of radius $B_n := n^{-\alpha}$.
- Split up the χ -integral like so:

$$\int_{-\delta}^{\delta} = \int_{-\delta}^{-B_n} + \int_{-B_n}^{-B_n} + \int_{B_n}^{\delta}.$$

$$\int_{-\delta}^{\delta} = \int_{-\delta}^{-B_n} + \int_{-B_n}^{-B_n} + \int_{B_n}^{\delta}.$$

• Bound integrals outside $[-B_n, B_n]$ by something exponentially decaying in n.

$$\int_{-\delta}^{\delta} = \int_{-\delta}^{-B_n} + \int_{-B_n}^{-B_n} + \int_{B_n}^{\delta}.$$

- Bound integrals outside $[-B_n, B_n]$ by something exponentially decaying in n.
- Estimate the $[B_n, B_n]$ by a standard Gaussian integral.

$$\int_{-\delta}^{\delta} = \int_{-\delta}^{-B_n} + \int_{-B_n}^{-B_n} + \int_{B_n}^{\delta}.$$

- Bound integrals outside $[-B_n, B_n]$ by something exponentially decaying in n.
- Estimate the $[B_n, B_n]$ by a standard Gaussian integral.
- Then "add back the tails."

$$\int_{-\delta}^{\delta} = \int_{-\delta}^{-B_n} + \int_{-B_n}^{-B_n} + \int_{B_n}^{\delta}.$$

- Bound integrals outside $[-B_n, B_n]$ by something exponentially decaying in n.
- Estimate the $[B_n, B_n]$ by a standard Gaussian integral.
- Then "add back the tails."
- Apply Lemma 1.

$$\int_{-\delta}^{\delta} = \int_{-\delta}^{-B_n} + \int_{-B_n}^{-B_n} + \int_{B_n}^{\delta}.$$

- Bound integrals outside $[-B_n, B_n]$ by something exponentially decaying in n.
- Estimate the $[B_n, B_n]$ by a standard Gaussian integral.
- Then "add back the tails."
- Apply Lemma 1.
- Compile error bounds in a table, propagate forward.

j	Constant N _i	Constant c _i	
0	$z_0 = 4\delta/3$	$\frac{8^3}{81} \max \left\{ ln \left(\frac{aw_1 e^{3\delta/2} + 1}{ cw^2 - 3\delta/2 - b } \right), 0 \right\} + \max \{ ln 1/w_2 , 0 \} + \pi + 3\delta/2 \right]$	
1	$z_0 = 4\delta/3$	$8 \cdot \frac{1}{1-aw_1e^{3\delta/2}}$	
2	$\lceil \delta^{-1/\alpha} \rceil$	c_0	
3	N_2	$2\delta e^{c_2}(rac{1}{1-aw_1}+c_1\delta)$	
4	N_3	c_1	
5	N_2	c_0	
6	$\max(N_2, \lceil \left(\frac{c0}{\mu}\right)^{1/(3\alpha-1)} \rceil)$	$e^{\mu}c_{5}$	
7	N_4	$(1-aw_1)c_4$	
8	$\max\{N_6, N_4\}$	$(1-aw_1)c_6c_4$	
9	$\max\{N_6, N_7, N_8, 1\}$	$rac{1}{2}\sqrt{rac{2\pi}{\mathcal{H}}}$	
10	N_9	$2c_9$	
11	N_9	$c_{9}c_{10}$	
12	$\max\{N_{11}, \tilde{N}\}$	$c_{11}c_{10}^{-1}$	
13	$\max\{N_{10}, \tilde{N}\}$	1	
14	$\max\{N_9, N_{12}, N_{13}\}$	$c_9 + c_{12} + c_{13}$	
15	$\max\{N_3, \tilde{N}\}$	$(1-aw_1)c_3\sqrt{rac{2\pi}{\mathcal{H}}}$	
16	$\max\{N_{14}, N_{15}\}$	$c_{14} + c_{15}$	

- Finally, apply Lemma 2 to find N such that $\epsilon \lambda \leq \lambda c \tau^n$ whenever $n \geq N$.
- $N_f = \max\{N_{16}, \left\lceil \left(\frac{c_{16}}{\epsilon}\right)^{1/(3\alpha-1)} \right\rceil, N\}$

- Finally, apply Lemma 2 to find N such that $\epsilon \lambda \leq \lambda c \tau^n$ whenever $n \geq N$.
- $N_f = \max\{N_{16}, \left\lceil \left(\frac{c_{16}}{\epsilon}\right)^{1/(3\alpha-1)} \right\rceil, N\}$
- By above estimate,

$$|\chi - \lambda| \le \lambda - c\tau^n$$

for all $n \geq N_f$

...And we're done!

Starting with $d \ge 4$ integer,

$$F(z) = F_{d!,d}(z) = \frac{1}{H(z)}, \qquad H(z) = 1 - \sum_{i=1}^{d} z_i + d! \prod_{i=1}^{d} z_i.$$

Starting with $d \ge 4$ integer,

$$F(z) = F_{d!,d}(z) = \frac{1}{H(z)}, \qquad H(z) = 1 - \sum_{i=1}^{d} z_i + d! \prod_{i=1}^{d} z_i.$$

Baryshnikov, Melczer, Pemantle and Straub showed that:

- $\forall d \geq 4$, $P(x) = 1 dx + d!x^d$ has a unique root $\rho \in \left[\frac{1}{d}, \frac{1}{d-1}\right]$
- $oldsymbol{
 ho}:=(
 ho,\ldots,
 ho)$ is strictly minimal smooth critical.

Starting with $d \ge 4$ integer,

$$F(z) = F_{d!,d}(z) = \frac{1}{H(z)}, \qquad H(z) = 1 - \sum_{i=1}^{d} z_i + d! \prod_{i=1}^{d} z_i.$$

Baryshnikov, Melczer, Pemantle and Straub showed that:

- $\forall d \geq 4$, $P(x) = 1 dx + d!x^d$ has a unique root $\rho \in [\frac{1}{d}, \frac{1}{d-1})$
- $\rho := (\rho, \dots, \rho)$ is strictly minimal smooth critical.
- Nondegeneracy follows from standard determinant identities.

Step 3 (and also Step 2) are both standard, until...

Step 3 (and also Step 2) are both standard, until... ...we attempt to find η, ζ . We can find η , but finding ζ reduces to computing

Step 3 (and also Step 2) are both standard, until... ...we attempt to find η, ζ . We can find η , but finding ζ reduces to computing

$$\min_{\hat{oldsymbol{z}} \in \mathcal{N}'} |g(\hat{oldsymbol{z}})| \quad ext{where} \quad g(\hat{oldsymbol{z}}) := rac{1-z_1-\dots-z_{d-1}}{1-d!z_1\dots z_{d-1}}$$

and
$$\mathcal{N}' = T(\hat{\boldsymbol{\rho}}) - \mathcal{N}$$
.

Conjecture

$$\rho + \delta > \min_{\hat{\boldsymbol{z}} \in \mathcal{N}'} |g(\hat{\boldsymbol{z}})| > \rho = |g(0, 0, \dots, 0)|,$$

with $\zeta = \min_{\hat{\mathbf{z}} \in \mathcal{N}'} |g(\hat{\mathbf{z}})|$ being computable to arbitrary accuracy.

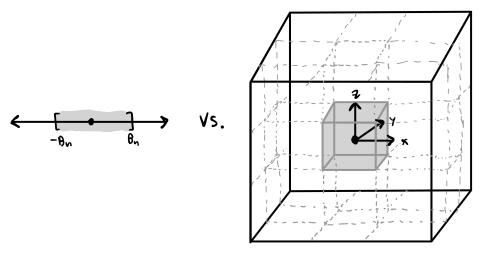
Step 4 is similar, with some wrinkles:

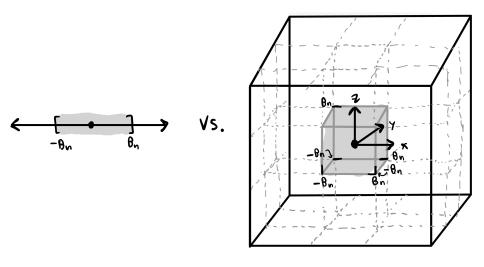
• When computing Taylor series expansions, such as

$$\phi(\hat{\boldsymbol{\theta}}) = \frac{1}{2}\hat{\boldsymbol{\theta}}^{\mathsf{T}}\mathcal{H}\hat{\boldsymbol{\theta}} + O(||\hat{\boldsymbol{\theta}}||_1^3), \quad ||\hat{\boldsymbol{\theta}}||_1 \to 0$$

need to compute upper bounds for images of compact set under derivatives of ϕ .

• Instead of splitting up domain of integration into 3 parts, we split space into $(d-1)^{d-1}$ subregions.





When estimating "central" region integral

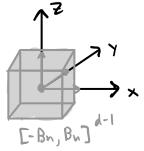
$$\int_{[-B_n,B_n]^{d-1}} e^{-\frac{n}{2}\hat{\boldsymbol{\theta}}^{\dagger}\mathcal{H}\hat{\boldsymbol{\theta}}} d\hat{\boldsymbol{\theta}},$$

need to eliminate cross-terms in quadratic form $\hat{\theta}^{\mathsf{T}}\mathcal{H}\hat{\theta}$.

• To do this, use *Principal Axis Theorem*, which says \exists orthogonal Q s.t.

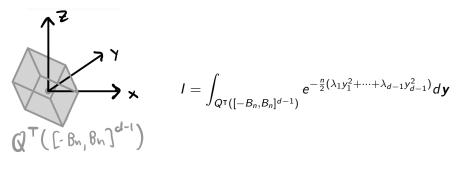
$$Q^{\mathsf{T}}\mathcal{H}Q = \begin{bmatrix} \lambda_1 & 0 \dots & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & \ddots & & \\ 0 & \dots & 0 & 0 & \lambda_{d-1} \end{bmatrix}.$$
• Thus we get $\mathbf{y} := Q^{-1}\theta$ s.t. $\mathbf{y}^{\mathsf{T}}\mathcal{H}\mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_{d-1} y_{d-1}^2.$

Domain:



$$I = \int_{[-B_n,B_n]^{d-1}} e^{-\frac{n}{2}\hat{\pmb{ heta}}^{\intercal}\mathcal{H}\hat{\pmb{ heta}}} d\hat{\pmb{ heta}}$$

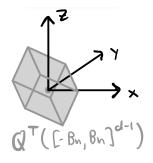
Domain:



$$I = \int_{Q^{\mathsf{T}}([-B_n, B_n]^{d-1})} e^{-\frac{n}{2}(\lambda_1 y_1^2 + \dots + \lambda_{d-1} y_{d-1}^2)} d\mathbf{y}$$

Domain:

Integral:

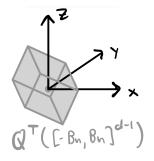


$$J = \int_{Q^{\intercal}([-B_n,B_n]^{d-1})} e^{-\frac{n}{2}(\lambda_1 y_1^2 + \dots + \lambda_{d-1} y_{d-1}^2)} d\mathbf{y}$$

...But we don't actually want to evaluate this! We want to evaluate on \mathbb{R}^{d-1} and "add back the tails!"

Domain:

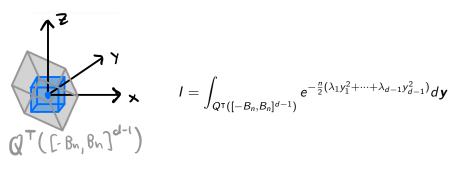
Integral:



$$J = \int_{Q^{\mathsf{T}}([-B_n,B_n]^{d-1})} e^{-\frac{n}{2}(\lambda_1 y_1^2 + \dots + \lambda_{d-1} y_{d-1}^2)} d\mathbf{y}$$

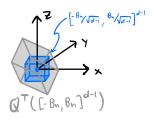
...But we don't actually want to evaluate this! We want to evaluate on \mathbb{R}^{d-1} and "add back the tails!" So, what do we do?

Domain:



$$I = \int_{Q^{\mathsf{T}}([-B_n, B_n]^{d-1})} e^{-\frac{n}{2}(\lambda_1 y_1^2 + \dots + \lambda_{d-1} y_{d-1}^2)} dy$$

Domain:



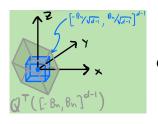
$$I = \int_{Q^{\mathsf{T}}([-B_n, B_n]^{d-1})} e^{-\frac{n}{2}(\lambda_1 y_1^2 + \dots + \lambda_{d-1} y_{d-1}^2)} d\mathbf{y}$$

Domain:

2 [-8 y Jd-1, 8 y Jd-1] d-1 Y X Q^T([-8 y, 8 y] d-1)

$$J:=\int_{\mathbb{R}^{d-1}-(ext{smaller cuboid})} A_n(oldsymbol{y}) e^{-n\phi_n(oldsymbol{y})} doldsymbol{y}$$

Domain:



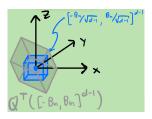
Integral:

$$J := \int_{\mathbb{R}^{d-1} - (\mathsf{smaller\ cuboid})} A_{n}(oldsymbol{y}) e^{-n\phi_{n}(oldsymbol{y})} doldsymbol{y}$$

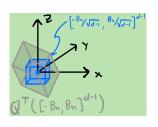
Can show that

$$J \leq \frac{(d-1)^{d-1}-1}{2}e^{-\frac{\lambda_1}{2(d-1)}n^{1-2\alpha}}.$$

Domain:



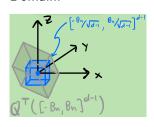
Domain:



Since

$$I = \int_{\mathbb{R}^{d-1}} - \int_{\mathbb{R}^{d-1} - Q^{\intercal}([-B_n, B_n]^{d-1})}$$

Domain:



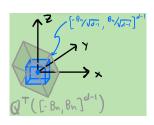
Since

$$I = \int_{\mathbb{R}^{d-1}} - \int_{\mathbb{R}^{d-1} - Q^{\intercal}([-B_n, B_n]^{d-1})}$$

and

$$\int_{\mathbb{R}^{d-1}-Q^\intercal([-B_n,B_n]^{d-1})} \leq \int_{\mathbb{R}^{d-1}-(\mathsf{smaller \ cuboid})}$$

Domain:



Since

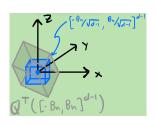
$$I = \int_{\mathbb{R}^{d-1}} - \int_{\mathbb{R}^{d-1} - Q^{\mathsf{T}}([-B_n, B_n]^{d-1})}$$

and

$$\int_{\mathbb{R}^{d-1}-Q^\intercal([-B_n,B_n]^{d-1})} \leq \int_{\mathbb{R}^{d-1}-(ext{smaller cuboid})}$$

Can sub in bound for J to our expression for I.

Domain:



Since

$$I = \int_{\mathbb{R}^{d-1}} - \int_{\mathbb{R}^{d-1} - Q^{\intercal}([-B_n, B_n]^{d-1})}$$

and

$$\int_{\mathbb{R}^{d-1}-Q^\intercal([-B_n,B_n]^{d-1})} \leq \int_{\mathbb{R}^{d-1}-(\mathsf{smaller \ cuboid})}$$

Can sub in bound for J to our expression for I. The rest of it is the same.

Index i	Value N_i	Value c_i
1	$z_1 := 3\delta/2$	$(d-1)^{d-1}M$
2	$\lceil 1/\delta \rceil$	$e^{-\delta}$
3	N_2	$\frac{(2\delta)^{d-1}e^{c_2}}{1-(d-1)\rho e^{\delta}}$
4	N_3	$((d-1)^{d-1}-1)c_3$
5	$\left[\left(\frac{1}{\delta}\right)^{1/lpha}\right]$	$(d-1)\tilde{M}$
6	N_5	$(d-1)^{d-1}M$
7	$\max(N_5, \lceil \tilde{\epsilon}^{1/(1-3\alpha)} \rceil)$	$e^{ ilde{\epsilon}}c_6$
8	N_7	$(1-(d-1)\rho)c_7$
9	$\max(N_5, N_7)$	$c_{5}c_{7}$
10	N_9	$(1-(d-1)\rho)c_9$
11	$\max(N_7, N_8, N_{10})$	$c_7 + c_8 + c_{10}$
12	3	$\frac{(d-1)^{d-1}}{2}$
13	N_12	$\frac{c_{12}^2}{1-(d-1)\rho}$
14	$\max(N_{12}, N_{11})$	$c_{13}c_{11}$
15	$\max(N_{13}, N_{14})$	$c_{13} + c_{14}$
16	$\max(N_{15}, N_4)$	$c_{15} + c_4$
17	$\max(N_{16}, \tilde{N})$	c_{16}
18	$\max(N_{17}, N_{11})$	$c_{17} + c_{11}$

Table of Contents

- 1 'Recall...'
- Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- 6 Computer Analysis
- 6 Future Work

So, a question remains...

Is it practical to check the first N_f terms on a computer?

So, a question remains...

Is it practical to check the first N_f terms on a computer?

ANSWER:

So, a question remains...

Is it practical to check the first N_f terms on a computer?

ANSWER:

Sometimes...

Take a = 3, b = 4, c = 3.

Take a=3, b=4, c=3. The first few entries in ΔF 's coefficient series are

$$1, 21, 667, 22869, 836001, \dots$$

so it's reasonable to expect our approach to work.

Take a=3, b=4, c=3. The first few entries in ΔF 's coefficient series are

$$1, 21, 667, 22869, 836001, \dots$$

so it's reasonable to expect our approach to work. Running our procedure above on this $\cal F$ with parameter values

•
$$\delta = \frac{1}{2} \min(w_2, \pi/2, \log(\sqrt{\frac{b}{cw_1}})) = w_2/2$$

- $\epsilon = 1/2$
- $\alpha = 2/5$
- $\mu = 1/2$

yields an index of:

Take a=3, b=4, c=3. The first few entries in ΔF 's coefficient series are

$$1, 21, 667, 22869, 836001, \dots$$

so it's reasonable to expect our approach to work. Running our procedure above on this F with parameter values

•
$$\delta = \frac{1}{2} \min(w_2, \pi/2, \log(\sqrt{\frac{b}{cw_1}})) = w_2/2$$

- $\epsilon = 1/2$
- $\alpha = 2/5$
- $\mu = 1/2$

yields an index of: $N_f = 1307$.

For a different choice of parameter values, namely:

- $\delta =$ (same as prev)
- $\epsilon = 2/5$
- $\alpha = 639/1280$
- $\mu = 1/2$

we can improve this bound slightly to:

For a different choice of parameter values, namely:

- $\delta =$ (same as prev)
- $\epsilon = 2/5$
- $\alpha = 639/1280$
- $\mu = 1/2$

we can improve this bound slightly to: $N_f = 1269$.

For a different choice of parameter values, namely:

- $\delta =$ (same as prev)
- $\epsilon = 2/5$
- $\alpha = 639/1280$
- $\mu = 1/2$

we can improve this bound slightly to: $N_f = 1269$.

Positivity for all terms up to 1269 can be checked on my machine (Intel i5-9400, 6 cores, 12GB RAM, no SSD), in a few minutes, using Mathematica's default Series expansion routine with no optimization.

For a different choice of parameter values, namely:

- $\delta =$ (same as prev)
- $\epsilon = 2/5$
- $\alpha = 639/1280$
- $\mu = 1/2$

we can improve this bound slightly to: $N_f = 1269$.

Positivity for all terms up to 1269 can be checked on my machine (Intel i5-9400, 6 cores, 12GB RAM, no SSD), in a few minutes, using Mathematica's default Series expansion routine with no optimization.

Alternatively, using diagonal recurrence, takes a few milliseconds. :)

"Creative Telescoping:"

• Pioneered by Wilf and Zeilberger in 1980s & 1990s.

"Creative Telescoping:"

- Pioneered by Wilf and Zeilberger in 1980s & 1990s.
- Useful for:
 - Summing *P-recursive* sequences
 - Integrating *D-finite* functions

"Creative Telescoping:"

- Pioneered by Wilf and Zeilberger in 1980s & 1990s.
- Useful for:
 - Summing *P-recursive* sequences
 - Integrating *D-finite* functions
- THE IDEA:

"Creative Telescoping:"

- Pioneered by Wilf and Zeilberger in 1980s & 1990s.
- Useful for:
 - Summing *P-recursive* sequences
 - Integrating *D-finite* functions
- THE IDEA:
 - Given $a_n := \sum_k s(n, k)$, where s is hypergeometric in both n, k.

"Creative Telescoping:"

- Pioneered by Wilf and Zeilberger in 1980s & 1990s.
- Useful for:
 - Summing *P-recursive* sequences
 - Integrating *D-finite* functions

• THE IDEA:

- Given $a_n := \sum_k s(n, k)$, where s is hypergeometric in both n, k.
- Know a_n satisfies some recurrence $\sum_{j=1}^{\ell} p_j(n) a_{n+j} = 0$.

"Creative Telescoping:"

- Pioneered by Wilf and Zeilberger in 1980s & 1990s.
- Useful for:
 - Summing *P-recursive* sequences
 - Integrating *D-finite* functions

• THE IDEA:

- Given $a_n := \sum_k s(n, k)$, where s is hypergeometric in both n, k.
- Know a_n satisfies some recurrence $\sum\limits_{j=1}^\ell p_j(n)a_{n+j}=0.$
- 'Cleverly construct' some t(n, k) such that

$$\sum_{j=1}^{\ell} p_j(n) s(n+j,k) = t(n,k+1) - t(n,k).$$

"Creative Telescoping:"

- Pioneered by Wilf and Zeilberger in 1980s & 1990s.
- Useful for:
 - Summing *P-recursive* sequences
 - Integrating *D-finite* functions

• THE IDEA:

- Given $a_n := \sum_k s(n, k)$, where s is hypergeometric in both n, k.
- Know a_n satisfies some recurrence $\sum\limits_{j=1}^\ell p_j(n) a_{n+j} = 0$.
- 'Cleverly construct' some t(n, k) such that

$$\sum_{j=1}^{\ell} p_j(n) s(n+j,k) = t(n,k+1) - t(n,k).$$

• Identity involving t then follows by summing over k.

The point: To compute diagonal coefficients for rational F(z), we can:

• Use *creative telescoping* to derive ODE satisfied by $\Delta_r F(z)$.

The point: To compute diagonal coefficients for rational F(z), we can:

- Use *creative telescoping* to derive ODE satisfied by $\Delta_r F(z)$.
- Convert this ODE to recurrence for f_{nr} .

The point: To compute diagonal coefficients for rational F(z), we can:

- Use *creative telescoping* to derive ODE satisfied by $\Delta_r F(z)$.
- Convert this ODE to recurrence for f_{nr} .
- Use recurrence to compute values.

For d = 4 and the following choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 4/10$
- $\mu = 1$
- $\delta = 4/100$

...we end up with

For d = 4 and the following choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 4/10$
- $\mu = 1$
- $\delta = 4/100$

...we end up with $N_f=206271359 \propto 10^8. \label{eq:Nf}$

For d = 4 and a slightly *different* choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 3/8$
- $\mu = 1$
- $\delta = 4/100$

...we end up with

For d = 4 and a slightly *different* choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 3/8$
- $\mu = 1$
- $\delta = 4/100$

...we end up with $N_f=908295 \propto 10^6.$

- Using creative telescoping, obtain diagonal recurrence.
- Can *reasonably* compute recurrence terms up to $\approx 10^5$.

For d = 4 and a slightly *different* choice of parameters:

- $\epsilon = \tilde{\epsilon} = 1/2$
- $\alpha = 3/8$
- $\mu = 1$
- $\delta = 4/100$

...we end up with $N_f=908295 \propto 10^6.$

- Using creative telescoping, obtain diagonal recurrence.
- ullet Can reasonably compute recurrence terms up to $pprox 10^5$.

In general, cannot expect to be able to compute N_f diagonal coefficients easily.

Table of Contents

- (Recall...
- Computing Final Index
 - Our Method
- Background
 - Bivariate Case
 - GRZ Case
- Proofs
 - General-use Lemmas
 - Bivariate Bound
 - GRZ Bound
- Computer Analysis
- 6 Future Work

• N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.

- N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.
- Obvious improvements in our analysis. Bounds can be tighter.

- N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.
- Obvious improvements in our analysis. Bounds can be tighter.
- Solve issue with reduction to optimization problem over Torus in Step 3 of GRZ case.

- N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.
- Obvious improvements in our analysis. Bounds can be tighter.
- Solve issue with reduction to optimization problem over Torus in Step 3 of GRZ case.
- Automate the analysis in Steps 3 and 4.

- N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.
- Obvious improvements in our analysis. Bounds can be tighter.
- Solve issue with reduction to optimization problem over Torus in Step 3 of GRZ case.
- Automate the analysis in Steps 3 and 4.
- Apply this process to other functions in the literature.

- N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.
- Obvious improvements in our analysis. Bounds can be tighter.
- Solve issue with reduction to optimization problem over Torus in Step 3 of GRZ case.
- Automate the analysis in Steps 3 and 4.
- Apply this process to other functions in the literature.
- Examine degenerate cases, e.g. when our coefficients are eventually zero in a direction, find N_f guaranteeing henceforward "zero-ness."

- N_f can be improved, to a point, by judicious choice of parameters $(\delta, \epsilon, \alpha, \mu)$. Find optimal choice of parameters and *limit value* of N_f as we approach this point in parameter space.
- Obvious improvements in our analysis. Bounds can be tighter.
- Solve issue with reduction to optimization problem over Torus in Step 3 of GRZ case.
- Automate the analysis in Steps 3 and 4.
- Apply this process to other functions in the literature.
- Examine degenerate cases, e.g. when our coefficients are eventually zero in a direction, find N_f guaranteeing henceforward "zero-ness."
- Expand methodology to accommodate general non-smooth case of ACSV.

Thank you!

Thank you! :)

The Theory of ACSV for Smooth Points, pages 185–246. Springer Nature Switzerland, Cham, 2021.