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Proving total positivity of a sequence from eventual positivity:
START.
v

Pick 1 or more key
directions in space.

Derive asymptotics along
these directions using ACSV,
verifying they’re positive.

Use earlier idea to
prove total positivity
along each direction.

@I%

Use uniformity over directions’
to conclude positivity on

conic nbd of each direction,
thus for whole space.

Use other properties of
function to prove
everywhere-positivity.

DONE!
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Computing N¢ — Our Method

INPUT:

@ a rational function F = G/H in d variables

@ a direction vector r € N¢. Here we always take r =1 := (1,1, ..., 1).
ASSUMING:

@ G, H coprime
e H(0)#0
e V = V(H) smooth

o F admits a nondegenerate strictly minimal smooth critical point
w e CY.

@ The coefficients f,, are eventually positive.
OUTPUT: An Nf € N such that Vn > Ng, f,r > 0.
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Computing N¢ — Our Method

PROCEDURE:

@ Verify that our set of assumptions hold for our inputs.
@ Run the smooth ACSV procedure on our inputs, obtaining:

e a complex multivariate saddle point integral x(n).
o a function A(n) such that x(n) (hence f,,) is asymptotically equivalent
to A(n).

© Compute numbers 7 € (0, |w~"|) and ¢ > 0 such that |f,r — x| < c7"
forall ne Z,.

© Show that there exists an L € Z4 such that |[x — A| < A — c¢7", for all
n> L.

@ This L = N¢. Output it.
DONE.



Computing N¢ — Our Method

@ Step 3 works because of

Lemma 5.1 If F admits a strictly minimal smooth contributing point w € CZ in the
direction r € RY then | fr — x| = O(") for some T < |WF|.



Computing N¢ — Our Method

@ Step 3 works because of
Lemma 5.1 If F admits a strictly minimal smooth contributing point w € CZ in the

direction r € RY then | fr — x| = O(") for some T < |WF|.

@ Step 4 works because ¢7" is exponentially smaller than our A growth
rate, and positivity follows from triangle inequality.
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We consider functions F : C2 — C of the form

1
1—ax — by +cxy’

F(x,y) = a,b>c>1

o Why? Because it's “easy...”



We consider functions F : C2 — C of the form

1
F -
(x.y) 1—ax — by +cxy’

a,b>c>1.

o Why? Because it's “easy...”

o ...But still of practical and academic interest:

o DeVries, Van der Hoeven, Pemantle (2012)
o Pemantle & Wilson (2008)

o Straub & Zudilin (2015)



Bound for family of bivariate functions:

Computation
Let F : C? — C be defined by

1

F -
(x.¥) 1—ax — by +cxy’

a,b>c>1.

Put

w=(w, wp) =

ab—m(l f)
ac "b/

To prove positivity of the diagonal coefficients of F it suffices to check the
first N¢ terms for positivity, where N is given by the formula...

v



Bound for family of bivariate functions:

Computation

_ 1/Be=1)] 1/(3a—1
/vfzmax{/\/z, (551,{<@) —‘ N, R@) /( )W’N}
o €

where
0 0 <6 < min{wy,7/2,iIn(b/(cw1))}
e 0<e<l, u>0,and
e aeQn(1/3,1/2)

are freely chosen parameters, and constants Na, cp, N, ci6, and N are
obtained effectively in the derivation.




Take a=3,b=4,c =3.
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Take a=3,b=4,c=3. So, F(x,y) = 1—3x—4y +3xy’

The first few entries in AF's coefficient sequence are

1,21, 667, 22869, 836001, ...

Running our procedure above on this F with parameter values

o §=1min(wa, /2, log( Tfn)) = wy/2

eec=1/2
e a=2/5
o u=1/2

yields an index of:



1
Take a=3,b=4,c=3. So, F(x,y) = 1—3x—4y +3xy’

The first few entries in AF's coefficient sequence are

1,21, 667, 22869, 836001, ...

Running our procedure above on this F with parameter values

o §=1min(wa, /2, log( Tfn)) = wy/2

eec=1/2
e a=2/5
o u=1/2

yields an index of: N¢ = 1307.



Bound for family of bivariate functions:

In the special case when a = b, we also have the following corollary:

Let F be as above with a= b > ¢ > 1. Then, to prove positivity of all of
F's power series coefficients, in any direction, it suffices to check the first
N¢ terms along the diagonal.




Bound for family of bivariate functions:

In the special case when a = b, we also have the following corollary:

Let F be as above with a= b > ¢ > 1. Then, to prove positivity of all of
F's power series coefficients, in any direction, it suffices to check the first
N¢ terms along the diagonal.

Proof: Follows from a result of Straub and Zudilin from 2015.



GRZ Case

Fix an integer d > 4. We consider the function Fq 4 : CY — C defined by

1

, Vz.
_zl..._zd_|_dlzl.....zd

Faira(z) = 1

@ Originally from Gillis, Reznick and Zeilberger's (1983). The authors
considered:

1
]__Xl_..._Xd_'_CXl...Xd.

Fc,d(X17 ceny Xd) =



GRZ Case

Fix an integer d > 4. We consider the function Fq 4 : CY — C defined by

1

, Vz.
_zl..._zd_|_d!zl.....zd

Faira(z) = 1

@ Originally from Gillis, Reznick and Zeilberger's (1983). The authors
considered:

1
1—X1—"'—Xd+CX1"'Xd.

Fc,d(X17 ceny Xd) =

Conjecture (GRZ)

For any d > 4, all coefficients of Fq1 4 are nonnegative.




This has already been shown...



This has already been shown...

Positivity of the Rational Function of Gillis, Reznick and

Zeilberger

Yaming Yu

Department of Statistics

University of California

Irvine, CA 92697, USA
yamingy@uci.edu

Abstract

We prove that the power series expansion of the rational function of Gillis, Reznick and

Zeilberger (1983) has only nonnegative cocfficients.



Reproof using our method

@ For d > 4, GRZ stated that nonnegativity of Fy 4 is implied by
nonnegativity of AFg 4.

@ Thus to prove conjecture, suffices to prove positivity of diagonal!



Reproof using our method

@ For d > 4, GRZ stated that nonnegativity of Fy 4 is implied by
nonnegativity of AFg 4.

@ Thus to prove conjecture, suffices to prove positivity of diagonal!

This looks like a job for our method.



Bound for GRZ function:

Computation
Let d > 4 be an integer. Let Fqi 4 : C9 — C be defined by

1

- vz e C.
1_21"'_Zd+d!21""'zd’ z€

Far.4(2)

To prove positivity of the diagonal coefficients of Fg 4 it suffices to check
the first N¢ terms for positivity, where N¢ is given by the formula...




Bound for GRZ function:

Computation

~ 1/(3a—1
Ny = max{Nz,Nle,/v, [(%) /e ﬂ ,N}
€

with the freely chosen parameters:
e ) € (0, W) chosen so that ﬁ — 1> |e?71, (p being the
unique real root of a certain polynomial,
e 0<eexl
e € (1/3,1/2)NQ
e 1 >0,

along with the constants Nig, c1s, N, N and N> which can be computed
(mostly) effectively as described in the derivation.




GRZ Example

For d = 4 and the following choice of parameters:

0o e=¢=1/2
e a=4/10
o u=1

e ) =4/100

...we end up with



GRZ Example

For d = 4 and the following choice of parameters:
eec=¢=1/)2
e a=4/10
o u=1
e ) =4/100
...we end up with Nf = 206271359  108.



GRZ Example

For d = 4 and a different choice of parameters:

eec=¢=1)2
e a=3/8

o u=1

e § =4/100

...we end up with



GRZ Example

For d = 4 and a different choice of parameters:
eec=¢=1)2
e a=3/8
o u=1
e 0 =4/100
...we end up with Ny = 908295 « 10°.



GRZ Example

For d = 4 and a different choice of parameters:

eec=¢=1)2
e a=3/8

o u=1

e § =4/100

...we end up with Ny = 908295 « 10°.

This may seem prohibitively large, but... stay tuned. :)
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Product Log / Lambert W-function

@ Multivalued function, with
branch Wy (z) for each k € Z.

-1 0 1 2 3 4 5 6

Image credits: Wikipedia.



Product Log / Lambert W-function

@ Multivalued function, with
branch Wy (z) for each k € Z.

e Forany z,w € C,
we" =z <= Wi(z)=w 2
for some k. !

-1 0 1 2 3 4 5 6

Image credits: Wikipedia.



Product Log / Lambert W-function

@ Multivalued function, with
branch Wy (z) for each k € Z.

e Forany z,w € C,
we" =z <= Wi(z)=w 2
for some k. !

o For real numbers, Wy and W_4
suffice. (See pic at right!) - —

-1 0 1 2 3 4 5 6

Image credits: Wikipedia.



“General Use” Lemma 1

Calculation involving the Product Log:
Let H be a positive real, a a rational strictly between 1/3 and 1/2. Then,
there exists positive N € Z such that

H 12 1
e 2" T < 23

for all n > N.

Proof idea:

H 1-2a 1_s

@ We know that e™ 2" < n27>% eventually.



“General Use” Lemma 1

Calculation involving the Product Log:
Let H be a positive real, a a rational strictly between 1/3 and 1/2. Then,
there exists positive N € Z such that

e—%nl_za < n%—3a
for all n > N.
Proof idea:
—H pl-2a 1 34
o We know that e 2 < nz eventually.

. . _H 12« 1
o Find largest real solution of e=2" = p23@

Solution candidates are:

604—1W Qa_lH 1/(1-2a) 6a_1W 2a_17—[ 1/(1-2a)
20—1 °\6a—1 12a—1" *\6a—1

using Product Log.




“General Use” Lemma 1

Calculation involving the Product Log:
Let H be a positive real, a a rational strictly between 1/3 and 1/2. Then,
there exists positive N € Z such that

e—%nl_za < n%—3a
for all n > N.
Proof idea:
—H pl-2a 1 34
o We know that e 2 < nz eventually.

12«

n 3«

: : _H 1
o Find largest real solution of e™ 2 = n2

Solution candidates are:

604—1W Qa_lH 1/(1-2a) 6a_1W 2a_17—[ 1/(1-2a)
20—1 °\6a—1 12a—1" *\6a—1

@ If none exists, take N =1. O

using Product Log.




“General Use” Lemma 2

Comparing c7” and A(n):
Let c,D >0, w=(wy,..wg) €CY and 0 < 7 < |wy|7- ... |wy|7L.
Then, there exists positive N € Z such that

ct" < Dlwy - ...- Wd|_nn(1_d)/2.

forall n > N.

Proof idea:

@ We know such N exists; we just have to find it.
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@ In each case, compute real (d — 1)/2th roots to see which product log
branches are active for that root.
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Comparing c7” and A(n):
Let c,D >0, w=(wy,..wg) €CY and 0 < 7 < |wy|7- ... |wy|7L.
Then, there exists positive N € Z such that

ct" < Dlwy - ...- Wd|_nn(1_d)/2.

forall n > N.

Proof idea:
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@ Split into cases on d's congruence mod 4.

@ In each case, compute real (d — 1)/2th roots to see which product log
branches are active for that root.

@ Solve equations for each active branch. Take max to get solution.



“General Use” Lemma 2

Comparing c7” and A(n):
Let c,D >0, w=(wy,..wg) €CY and 0 < 7 < |wy|7- ... |wy|7L.
Then, there exists positive N € Z such that

ct" < Dlwy - ...- Wd|_nn(1_d)/2.

forall n > N.

Proof idea:
@ We know such N exists; we just have to find it.
@ Split into cases on d's congruence mod 4.

@ In each case, compute real (d — 1)/2th roots to see which product log
branches are active for that root.

@ Solve equations for each active branch. Take max to get solution.

@ If none are active, just take N = 1. [.



Bivariate Bound

Always remember the steps in our Method...



Bivariate Bound

INPUT:

@ a rational function F = G/H in d variables

@ a direction vector r € N¢. Here we always take r =1 := (1,1, ..., 1).
ASSUMING:

@ G, H coprime
e H(0)#0
e V = V(H) smooth

o F admits a nondegenerate strictly minimal smooth critical point
w e CY.

@ The coefficients f,, are eventually positive.
OUTPUT: An Nf € N such that Vn > Ng, f,r > 0.



Bivariate Bound

PROCEDURE:

@ Verify that our set of assumptions hold for our inputs.
@ Run the smooth ACSV procedure on our inputs, obtaining:

e a complex multivariate saddle point integral x(n).
o a function A(n) such that x(n) (hence f,,) is asymptotically equivalent

to A(n).
© Compute numbers 7 € (0, |w~"|) and ¢ > 0 such that |f,r — x| < c7"
forall ne Z,.
© Show that there exists an L € Z4 such that |[x — A| < A — c¢7", for all
n>L.

@ This L = N¢. Output it.
DONE.



Bivariate Bound — STEP 1: Verify Assumptions

1
F = b > 1.
(%) 1—ax— by +cxy’ »b=c>

@ )V is set of zeros of denominator:

b ax —1
= 2: —_ d _= .
1% {(x,y)e(C x;«écan y cx—b}

e Vis smooth, as Hy = —a+cy, H, = —b+ cx, so if (x,y) € V then
H, # 0.
@ Determine crit(1) by solving

wiH (w) — wiH, (w) =0, 2<j<d’



Bivariate Bound — STEP 1: Verify Assumptions

@ See that

w = (w, wp) =

ab — W (1, %) € crit(1)

is minimal by showing that for no v € V is |v| = t|w|, for some
te(0,1).
@ Minimality of w is also strict.

@ Nondegeneracy of w follows from H matrix formula.



Bivariate Bound — STEP 1: Verify Assumptions

@ See that

w = (w, wp) =

ab — W (1, %) € crit(1)

is minimal by showing that for no v € V is |v| = t|w/|, for some
te(0,1).
@ Minimality of w is also strict.
@ Nondegeneracy of w follows from H matrix formula.
By Theorem 5.2 of [Mel21] we obtain

(W1W2)_n 1

V2tn  \/det(H)wa(b — cwi)

where H is the matrix obtained in Lemma 5.5.

fnl = (1+ O(l/n))?



Bivariate Bound

PROCEDURE:

@ Verify that our set of assumptions hold for our inputs.
@ Run the smooth ACSV procedure on our inputs, obtaining:

e a complex multivariate saddle point integral x(n).
o a function A(n) such that x(n) (hence f,,) is asymptotically equivalent

to A(n).
© Compute numbers 7 € (0, |w~"|) and ¢ > 0 such that |f,r — x| < c7"
forall ne Z,.
© Show that there exists an L € Z4 such that |[x — A| < A — c¢7", for all
n>L.

@ This L = N¢. Output it.
DONE.



Bivariate Bound — STEP 3: Finding 7, ¢

— (wwp)™" 1
o Call A(n) = A " aO0mo—cm)’




Bivariate Bound — STEP 3: Finding 7, ¢

() L
o Call A(n) = A " aO0mo—cm)’
@ To find y, we let

§ < min {Wz, /2, ;ln(b/(cwl))}

and then introduce 7 = T(wy), N, N":
/\IIM\




Bivariate Bound — STEP 3: Finding 7, ¢

() L
o Call A(n) = A " aO0mo—cm)’
@ To find y, we let

§ < min {Wzﬂr/l ;ln(b/(cwl))}

and then introduce 7 = T(wy), N, N":
/\IIM\

N'=Y-A
S KN _
.‘iéx Also define
\ﬁ/&[“ ?he g:N—=C, g(x) =2




Bivariate Bound — STEP 3: Finding 7, ¢

@ Then, we need to verify explicitly that this §, 7, N, g allow us to
perform a local singularity analysis.
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@ Then, we need to verify explicitly that this §, 7, N, g allow us to
perform a local singularity analysis.
@ Specifically, we need 1, > 0 such that

o [g(2)|<n<wa+dforzelN,
o wr < (< |g(2)| forze N



Bivariate Bound — STEP 3: Finding 7, ¢

@ Then, we need to verify explicitly that this §, 7, N, g allow us to
perform a local singularity analysis.
@ Specifically, we need 1, > 0 such that
o [g(2)|<n<wa+dforzel,
o wr < (< |g(2)| forze N

o Ultimately, this reduces to optimizing

h(2) = |g(2)] on N, \".



Bivariate Bound — STEP 3: Finding 7, ¢

@ Then, we need to verify explicitly that this §, 7, N, g allow us to
perform a local singularity analysis.
@ Specifically, we need 1, > 0 such that
o [g(2)|<n<wa+dforzel,
o Wy < (¢ < |g(2)| for ze N'.
o Ultimately, this reduces to optimizing
h(z) = |g(2)| on N,N'.
e We find that n, ( := h(J) works.



Bivariate Bound — STEP 3: Finding 7, ¢

The rest of this is in a similar vein to the example...

@ Introduce the integrals I, lioc, lout, X := ljoc — lout to compute residues.
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The rest of this is in a similar vein to the example...
@ Introduce the integrals I, lioc, lout, X := ljoc — lout to compute residues.

@ Show (explicitly) that |/ — ljoc| and |lout| grow exponentially smaller
than A



Bivariate Bound — STEP 3: Finding 7, ¢

The rest of this is in a similar vein to the example...
@ Introduce the integrals I, lioc, lout, X := ljoc — lout to compute residues.
@ Show (explicitly) that |/ — ljoc| and |lout| grow exponentially smaller
than A.
@ Combine bounds to obtain ¢, 7 such that

|fi1 — x| < er".



Bivariate Bound

PROCEDURE:

@ Verify that our set of assumptions hold for our inputs.
@ Run the smooth ACSV procedure on our inputs, obtaining:

e a complex multivariate saddle point integral x(n).
o a function A(n) such that x(n) (hence f,,) is asymptotically equivalent

to A(n).
© Compute numbers 7 € (0, |w~"|) and ¢ > 0 such that |f,r — x| < c7"
forall ne Z,.
© Show that there exists an L € Z4 such that |[x — A| < A — c¢7", for all
n>L.

@ This L = N¢. Output it.
DONE.



Bivariate Bound — STEP 4: Finding N¢

Basically the same analysis as the example...



Bivariate Bound — STEP 4: Finding N¢

Basically the same analysis as the example...
...except that we replace all O(-)'s with explicit error bounds.



Bivariate Bound — STEP 4: Finding N¢

Main steps in our analysis:

@ Parametrize A/. Write residue x as a parametrized integral,
identifying A(0), ¢(6):

~ (wawp)" /5 —né(6)
x="g | Aw)e i do



Bivariate Bound — STEP 4: Finding N¢

Main steps in our analysis:

@ Parametrize A/. Write residue x as a parametrized integral,
identifying A(0), ¢(6):

~ (wawp)" /5 —né(6)
x="g | Aw)e i do

@ Take Taylor series expansion of A, ¢ around 0. Use it to bound error
for e "®_ A both inside and outside ball of radius B, := n—°.



Bivariate Bound — STEP 4: Finding N¢

Main steps in our analysis:

@ Parametrize A/. Write residue x as a parametrized integral,
identifying A(0), ¢(6):

~ (wawp)" /5 —né(6)
x="g | Aw)e i do

@ Take Taylor series expansion of A, ¢ around 0. Use it to bound error
for e "®_ A both inside and outside ball of radius B, := n—°.

@ Split up the x-integral like so:

4 —Bn —Bn 0
Lol L e
= -0 —Bn n



Bivariate Bound — STEP 4: Finding N¢

5 —B, —B, s
L=t ]
-5 -5 ~B, .
e Bound integrals outside [—B,, B,] by something exponentially
decaying in n.



Bivariate Bound — STEP 4: Finding N¢

5 ~B, -B, s
L=l ]+
-5 -5 ~B, .
e Bound integrals outside [—B,, B,] by something exponentially

decaying in n.

e Estimate the [B,, By] by a standard Gaussian integral.



Bivariate Bound — STEP 4: Finding N¢

5 -B, -B, s
L=L <L
-5 -5 ~B, .
e Bound integrals outside [—B,, B,] by something exponentially
decaying in n.
e Estimate the [B,, By] by a standard Gaussian integral.
@ Then “add back the tails.”



Bivariate Bound — STEP 4: Finding N¢

5 —B, —B, s
L=t ]
-5 -5 ~B, .
Bound integrals outside [— B, By| by something exponentially
decaying in n.

Estimate the [B,, B,] by a standard Gaussian integral.
Then “add back the tails.”
Apply Lemma 1.



Bivariate Bound — STEP 4: Finding N¢

5 —B, —B, s
L=t ]
-5 -5 ~B, .
Bound integrals outside [— B, By| by something exponentially
decaying in n.

Estimate the [B,, B,] by a standard Gaussian integral.
Then “add back the tails.”
Apply Lemma 1.

Compile error bounds in a table, propagate forward.



Bivariate Bound — STEP 4: Finding N¢

Constant Nj

Constant c;

00~ & ULk W = O

20 =46/3
20 =46/3
[6=1/]
No
N3
N>

max(Na, ((%
Ny
max{Ns, Ny}
max{Ng, N7, Ng, 1}
Ny
NQ N
max{Nu,]Y}
max{Nyo, N}
max{ Ny, N1z, N13}
max{N3, N}
max{Nia, Ni5}

)1/(3a—1>])

23
81

s [

2w, e30/2
) 0} + max{in1 fual, 0} + 7 + 36/2]
1

8 T
Co
26e¢2 (1

T—aw;

+¢10)
¢
co
ety
(1 — aw)eyq
(1 — aws)cges
1 fom
2\ H
2¢q
€9C10
encry
1
g+ 12 +c13

(1- awl)cm/%”

Ccla + C15
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Bivariate Bound — STEP 4: Finding N¢

e Finally, apply Lemma 2 to find N such that eA < A\ — ¢7" whenever
n>N.

o N = max{Njs, {(m)l/(wfl)—‘ , N}

€



Bivariate Bound — STEP 4: Finding N¢

e Finally, apply Lemma 2 to find N such that eA < A\ — ¢7" whenever
n>N.
o Nf = max{Njs, {(m)l/(wfl)—‘ , N}

€

@ By above estimate,
X =A< A—c7"

for all n > N¢

...And we're done!
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GRZ Bound Proof Summary

Starting with d > 4 integer,

d d
F(z) = Fana(2) = H(lz), Hz)=1- z+d ] =
i=1 i=1

Baryshnikov, Melczer, Pemantle and Straub showed that:
o Vd >4, P(x) =1 — dx + d!x? has a unique root p € [§, 715)

e p:=(p,...,p) is strictly minimal smooth critical.



GRZ Bound Proof Summary

Starting with d > 4 integer,

d d
F(z) = Fana(2) = H(lz), Hz)=1- z+d ] =
i=1 i=1

Baryshnikov, Melczer, Pemantle and Straub showed that:
o Vd >4, P(x) =1 — dx + d!x? has a unique root p € [§, 715)
e p:=(p,...,p) is strictly minimal smooth critical.

@ Nondegeneracy follows from standard determinant identities.



GRZ Bound Proof Summary

Step 3 (and also Step 2) are both standard, until...
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1,(. We can find 7, but finding ¢ reduces to computing



GRZ Bound Proof Summary

Step 3 (and also Step 2) are both standard, until... ... we attempt to find
1,(. We can find 7, but finding ¢ reduces to computing

l—z1—- =24

K 8] where  g(2) = g

and N/ = T(p) — V.



GRZ Bound Proof Summary

p+6> min |g(2)| > p =[g(0,0,...,0),
2eN’

with ( = minzcar |g(2)| being computable to arbitrary accuracy.




GRZ Bound Proof Summary

Step 4 is similar, with some wrinkles:

@ When computing Taylor series expansions, such as
A 1. ~ ~ ~
(0) = 50710 + O(||6l[7), [10]l — 0

need to compute upper bounds for images of compact set under
derivatives of ¢.

@ Instead of splitting up domain of integration into 3 parts, we split
space into (d — 1)9~! subregions.
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GRZ Bound Proof Summary

© When estimating “central” region integral

/ efgéTHédHA,
[*Bn,Bn]d_1

need to eliminate cross-terms in quadratic form 0TH6.

@ To do this, use Principal Axis Theorem, which says 3 orthogonal Q

s.t.
At 0... 0 0 0
0 X 0 0
QTHQ =
0 ... 0 0 X

o Thuswe get y := Q710 st. yTHy = )\1y12 4+ -+ Ad_lyﬁ,l-



GRZ Bound Proof Summary

Domain:

Integral:

NE
: Y
| = / e_géTHédOA
% [~ Bp,By]d—1

a-1
C-Bw,Bu)
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GRZ Bound Proof Summary

Domain: Integral:

2

" /- / e~ S0t ra1v ) gy
QT (B Brl1)
T d-t
@ ( [' B"‘l Bh’l )

...But we don't actually want to evaluate this! We want to evaluate on
R9~1 and “add back the tails!”

So, what do we do?
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GRZ Bound Proof Summary

Domain: Integral:

2 ["’“/m, sh/‘/d—_‘.]”"
Y

% | = / e—%(k1y12+~-+/\d_1y371)dy
QT([—Bn,Bn]971)

Q708 807)
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Domain: Integral:

-2 i - e“/d—q -
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GRZ Bound Proof Summary

Domain: Integral:

2 )
[ T "_'] J :_/ An(y)e_”¢n(Y)dy
Y RI—1—(smaller cuboid)

% Can show that

(d—1)9-1 - 16_%,,172,1‘
2

QT8 807) J<
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Domain:
CArs ; Ll
Y

R

QT (C6.,81"")
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Domain: Since
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and
A
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Q ([B, ] ) RI-1—QT([—Bn,Bn]9"1) RI—1—(smaller cuboid)
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Domain: Since
2 YQQYJT-.,""/JE]A_I I:/ _/
y Rd—1 RI-1_QT([—B,,Ba]4~1)
and
A
ar d-t
~ Pw BV\ / S/\
@ (C8, | ) RA~1_QT([—Bs,,B,]9-1) Rd—1_(smaller cuboid)

Can sub in bound for J to our expression for I.



GRZ Bound Proof Summary

Domain: Since
2 YQQYJT-.,""/JE]A_I I:/ _/
y Rd—1 RI-1_QT([—B,,Ba]4~1)
and
A
ar d-t
~ Pw BV\ / S/\
@ (C8, | ) RA~1_QT([—Bs,,B,]9-1) Rd—1_(smaller cuboid)

Can sub in bound for J to our expression for |. The rest of it is the same.



GRZ Bound Proof Summary

Index i Value N; Value ¢;
1 21 :=30/2 (d—1)¥1M
2 [1/6] e™?
d—1_c
3 N 2
4 N; ((d—=1)41 —1)es
5 ("] (d—1)M
6 5 (d— 1)d_1M
7 max(Ns, [él/(l_?’a)]) efcs
8 N7 (I—=(d=1)p)er
9 maX(N5,N7) C5C7
10 Ny (1= (d—=1)p)cy
11 maX(N7,N8,N10) cr +Cg;|—1610
12 3 %
13 Np2 ﬁ
14 max(ng,NH) C13C11
15 max(N13,N14) c13 + C14
16 ma.x(N15, N4) ci5 + ¢4
17 max(NlG, N) C16
18 max(N17, Nll) c17 +C11
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Is it practical to check the first N¢ terms on a computer?
ANSWER:

Sometimes...
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Take a=3,b=4,c = 3. The first few entries in AF’s coefficient series
are

1,21, 667, 22869, 836001, ...

so it's reasonable to expect our approach to work. Running our procedure
above on this F with parameter values

e )= % min(wa, /2, log( C—S/l)) = wy/2

eec=1/2
e a=2/5
o u=1/2

yields an index of: N¢ = 1307.



For a different choice of parameter values, namely:

@ ) = (same as prev)

e ec=2/5
e o =639/1280
o u=1/2

we can improve this bound slightly to:



For a different choice of parameter values, namely:

@ ) = (same as prev)

e ec=2/5
e o =639/1280
o u=1/2

we can improve this bound slightly to: Nf = 1269.



For a different choice of parameter values, namely:

@ ) = (same as prev)

e ec=2/5
e o =639/1280
o u=1/2

we can improve this bound slightly to: Nf = 1269.

Positivity for all terms up to 1269 can be checked on my machine (Intel
i5-9400, 6 cores, 12GB RAM, no SSD), in a few minutes, using
Mathematica's default Series expansion routine with no optimization.



For a different choice of parameter values, namely:

@ ) = (same as prev)

e ec=2/5
e o =639/1280
o u=1/2

we can improve this bound slightly to: Nf = 1269.

Positivity for all terms up to 1269 can be checked on my machine (Intel
i5-9400, 6 cores, 12GB RAM, no SSD), in a few minutes, using
Mathematica's default Series expansion routine with no optimization.

Alternatively, using diagonal recurrence, takes a few milliseconds. :)
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Diagonal Recurrences with Creative Telescoping

“Creative Telescoping:”
@ Pioneered by Wilf and Zeilberger in 1980s & 1990s.

@ Useful for:

e Summing P-recursive sequences
o Integrating D-finite functions

e THE IDEA:

e Given a, := > s(n, k), where s is hypergeometric in both n, k.
K
‘

o Know a, satisfies some recurrence ) pj(n)a,j = 0.
j=1
o ‘Cleverly construct’ some t(n, k) such that

14

> pi(n)s(n+j,k) = t(n, k+1) — t(n, k).
j=1

o ldentity involving t then follows by summing over k.
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Diagonal Recurrences with Creative Telescoping

The point: To compute diagonal coefficients for rational F(z), we can:
e Use creative telescoping to derive ODE satisfied by A,F(z).
@ Convert this ODE to recurrence for f,,.

@ Use recurrence to compute values.
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GRZ Example

For d = 4 and the following choice of parameters:
eec=¢=1/)2
e a=4/10
o u=1
e ) =4/100
...we end up with Nf = 206271359  108.
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GRZ Example

For d = 4 and a slightly different choice of parameters:

ec=¢=1/2
e a=23/8

o u=1

o §=14/100

...we end up with Ny = 908295 « 10°.

@ Using creative telescoping, obtain diagonal recurrence.

e Can reasonably compute recurrence terms up to /= 10°.

In general, cannot expect to be able to compute Nf diagonal coefficients
easily.
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@ Nr can be improved, to a point, by judicious choice of parameters
(6, €, a, ). Find optimal choice of parameters and limit value of N¢
as we approach this point in parameter space.

@ Obvious improvements in our analysis. Bounds can be tighter.

@ Solve issue with reduction to optimization problem over Torus in Step
3 of GRZ case.

@ Automate the analysis in Steps 3 and 4.
@ Apply this process to other functions in the literature.

@ Examine degenerate cases, e.g. when our coefficients are eventually
zero in a direction, find N¢ guaranteeing henceforward “zero-ness.”

@ Expand methodology to accommodate general non-smooth case of
ACSV.



Thank you! :)



[@ Stephen Melczer.
The Theory of ACSV for Smooth Points, pages 185-246.
Springer Nature Switzerland, Cham, 2021.
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