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‘Recall’...

Proving total positivity of a sequence from eventual positivity:
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Computing Nf – Our Method

INPUT:

a rational function F = G/H in d variables

a direction vector r ∈ Nd . Here we always take r = 1 := (1, 1, ..., 1).

ASSUMING:

G ,H coprime

H(0) ̸= 0

V = V(H) smooth

F admits a nondegenerate strictly minimal smooth critical point
w ∈ Cd

∗ .

The coefficients fnr are eventually positive.

OUTPUT: An Nf ∈ N such that ∀n ≥ Nf , fnr > 0.



Computing Nf – Our Method
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Computing Nf – Our Method

PROCEDURE:

1 Verify that our set of assumptions hold for our inputs.
2 Run the smooth ACSV procedure on our inputs, obtaining:

a complex multivariate saddle point integral χ(n).
a function λ(n) such that χ(n) (hence fnr ) is asymptotically equivalent
to λ(n).

3 Compute numbers τ ∈ (0, |w−r |) and c > 0 such that |fnr − χ| < cτn

for all n ∈ Z+.

4 Show that there exists an L ∈ Z+ such that |χ− λ| ≤ λ− cτn, for all
n ≥ L.

5 This L = Nf . Output it.

DONE.



Computing Nf – Our Method

Step 3 works because of

Step 4 works because cτn is exponentially smaller than our λ growth
rate, and positivity follows from triangle inequality.
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Bivariate Case

We consider functions F : C2 → C of the form

F (x , y) =
1

1− ax − by + cxy
, a, b ≥ c > 1.

Why? Because it’s “easy...”

...But still of practical and academic interest:

DeVries, Van der Hoeven, Pemantle (2012)
Pemantle & Wilson (2008)
Straub & Zudilin (2015)
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Bound for family of bivariate functions:

Computation

Let F : C2 → C be defined by

F (x , y) =
1

1− ax − by + cxy
, a, b ≥ c > 1.

Put

w = (w1,w2) :=
ab −

√
(ab)2 − abc

ac

(
1,

a

b

)
.

To prove positivity of the diagonal coefficients of F it suffices to check the
first Nf terms for positivity, where Nf is given by the formula...



Bound for family of bivariate functions:

Computation

Nf = max

{
N2, ⌈δ

−1
α ⌉,

⌈(
c0
µ

)1/(3α−1)
⌉
, Ñ,

⌈(c16
ϵ

)1/(3α−1)
⌉
,N

}

where

0 < δ < min
{
w2, π/2,

1
2 ln(b/(cw1))

}
0 < ϵ < 1, µ > 0, and

α ∈ Q ∩ (1/3, 1/2)

are freely chosen parameters, and constants N2, c0, Ñ, c16, and N are
obtained effectively in the derivation.



E.g.: Bivariate

Take a = 3, b = 4, c = 3.

So, F (x , y) =
1

1− 3x − 4y + 3xy
.

The first few entries in ∆F ’s coefficient sequence are

1, 21, 667, 22869, 836001, ...

Running our procedure above on this F with parameter values

δ = 1
2 min(w2, π/2, log(

√
b

cw1
)) = w2/2

ϵ = 1/2

α = 2/5

µ = 1/2

yields an index of: Nf = 1307.
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Bound for family of bivariate functions:

In the special case when a = b, we also have the following corollary:

Corollary

Let F be as above with a = b > c > 1. Then, to prove positivity of all of
F ’s power series coefficients, in any direction, it suffices to check the first
Nf terms along the diagonal.

Proof: Follows from a result of Straub and Zudilin from 2015.
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GRZ Case

Fix an integer d ≥ 4. We consider the function Fd!,d : Cd → C defined by

Fd!,d(z) =
1

1− z1 · · · − zd + d!z1 · · · · · zd
, ∀z .

Originally from Gillis, Reznick and Zeilberger’s (1983). The authors
considered:

Fc,d(x1, ..., xd) =
1

1− x1 − · · · − xd + cx1 · · · xd
.

Conjecture (GRZ)

For any d ≥ 4, all coefficients of Fd!,d are nonnegative.
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Reproof using our method

For d ≥ 4, GRZ stated that nonnegativity of Fd!,d is implied by
nonnegativity of ∆Fd!,d .

Thus to prove conjecture, suffices to prove positivity of diagonal!

This looks like a job for our method.
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Bound for GRZ function:

Computation

Let d ≥ 4 be an integer. Let Fd!,d : Cd → C be defined by

Fd!,d(z) =
1

1− z1 · · · − zd + d!z1 · · · · · zd
, ∀z ∈ Cd .

To prove positivity of the diagonal coefficients of Fd!,d it suffices to check
the first Nf terms for positivity, where Nf is given by the formula...



Bound for GRZ function:

Computation

Nf = max

{
N2,N16, Ñ,

⌈(c18
ϵ

)1/(3α−1)
⌉
,N

}
with the freely chosen parameters:

δ ∈ (0, 1
(d−1)d−1 ), chosen so that 1

ρ·(d−1) − 1 ≥ |e2δ−1|, (ρ being the

unique real root of a certain polynomial,

0 < ϵ, ϵ̃ < 1

α ∈ (1/3, 1/2) ∩Q
µ > 0,

along with the constants N16, c18, N, Ñ and N2 which can be computed
(mostly) effectively as described in the derivation.



GRZ Example

For d = 4 and the following choice of parameters:

ϵ = ϵ̃ = 1/2

α = 4/10

µ = 1

δ = 4/100

...we end up with

Nf = 206271359 ∝ 108.
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GRZ Example

For d = 4 and a different choice of parameters:

ϵ = ϵ̃ = 1/2

α = 3/8

µ = 1

δ = 4/100

...we end up with

Nf = 908295 ∝ 106.

This may seem prohibitively large, but... stay tuned. :)
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Product Log / Lambert W-function

Multivalued function, with
branch Wk(z) for each k ∈ Z.

For any z ,w ∈ C,
wew = z ⇐⇒ Wk(z) = w
for some k .

For real numbers, W0 and W−1

suffice. (See pic at right!)

Image credits: Wikipedia.
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“General Use” Lemma 1

Lemma

Calculation involving the Product Log:
Let H be a positive real, α a rational strictly between 1/3 and 1/2. Then,
there exists positive N ∈ Z such that

e−
H
2
n1−2α

< n
1
2
−3α

for all n ≥ N.

Proof idea:

We know that e−
H
2
n1−2α

< n
1
2
−3α eventually.

Find largest real solution of e−
H
2
n1−2α

= n
1
2
−3α using Product Log.

Solution candidates are:[
6α− 1

2α− 1
W0

(
2α− 1

6α− 1
H
)]1/(1−2α)

,

[
6α− 1

2α− 1
W−1

(
2α− 1

6α− 1
H
)]1/(1−2α)

.

If none exists, take N = 1. □
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“General Use” Lemma 2

Lemma

Comparing cτn and λ(n):
Let c ,D > 0, w = (w1, ...wd) ∈ Cd

∗ and 0 < τ < |w1|−1 · ... · |wd |−1.
Then, there exists positive N ∈ Z such that

cτn < D|w1 · ... · wd |−nn(1−d)/2.

for all n ≥ N.

Proof idea:

We know such N exists; we just have to find it.

Split into cases on d ’s congruence mod 4.

In each case, compute real (d − 1)/2th roots to see which product log
branches are active for that root.

Solve equations for each active branch. Take max to get solution.

If none are active, just take N = 1.

□.
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Bivariate Bound

Always remember the steps in our Method...



Bivariate Bound

INPUT:

a rational function F = G/H in d variables

a direction vector r ∈ Nd . Here we always take r = 1 := (1, 1, ..., 1).

ASSUMING:

G ,H coprime

H(0) ̸= 0

V = V(H) smooth

F admits a nondegenerate strictly minimal smooth critical point
w ∈ Cd

∗ .

The coefficients fnr are eventually positive.

OUTPUT: An Nf ∈ N such that ∀n ≥ Nf , fnr > 0.



Bivariate Bound

PROCEDURE:

1 Verify that our set of assumptions hold for our inputs.
2 Run the smooth ACSV procedure on our inputs, obtaining:

a complex multivariate saddle point integral χ(n).
a function λ(n) such that χ(n) (hence fnr ) is asymptotically equivalent
to λ(n).

3 Compute numbers τ ∈ (0, |w−r |) and c > 0 such that |fnr − χ| < cτn

for all n ∈ Z+.

4 Show that there exists an L ∈ Z+ such that |χ− λ| ≤ λ− cτn, for all
n ≥ L.

5 This L = Nf . Output it.

DONE.



Bivariate Bound – STEP 1: Verify Assumptions

F (x , y) =
1

1− ax − by + cxy
, a, b ≥ c > 1.

V is set of zeros of denominator:

V =

{
(x , y) ∈ C2 : x ̸= b

c
and y =

ax − 1

cx − b

}
.

V is smooth, as Hx = −a+ cy , Hy = −b + cx , so if (x , y) ∈ V then
Hy ̸= 0.

Determine crit(1) by solving{
H(w) = 0

w1Hz1(w)− wjHzj (w) = 0, 2 ≤ j ≤ d
.



Bivariate Bound – STEP 1: Verify Assumptions

See that

w = (w1,w2) :=
ab −

√
(ab)2 − abc

ac

(
1,

a

b

)
∈ crit(1)

is minimal by showing that for no v ∈ V is |v | = t|w |, for some
t ∈ (0, 1).

Minimality of w is also strict.

Nondegeneracy of w follows from H matrix formula.

By Theorem 5.2 of [Mel21] we obtain

fn1 =
(w1w2)

−n

√
2πn

· 1√
det(H)w2(b − cw1)

(1 + O(1/n)),

where H is the matrix obtained in Lemma 5.5.
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Bivariate Bound

PROCEDURE:

1 Verify that our set of assumptions hold for our inputs.
2 Run the smooth ACSV procedure on our inputs, obtaining:

a complex multivariate saddle point integral χ(n).
a function λ(n) such that χ(n) (hence fnr ) is asymptotically equivalent
to λ(n).

3 Compute numbers τ ∈ (0, |w−r |) and c > 0 such that |fnr − χ| < cτn

for all n ∈ Z+.

4 Show that there exists an L ∈ Z+ such that |χ− λ| ≤ λ− cτn, for all
n ≥ L.

5 This L = Nf . Output it.

DONE.



Bivariate Bound – STEP 3: Finding τ, c

Call λ(n) := (w1w2)−n
√
2πn

· 1√
det(H)w2(b−cw1)

.

To find χ, we let

δ < min

{
w2, π/2,

1

2
ln(b/(cw1))

}
and then introduce T = T (w1), N ,N ′:

Also define
g : N → C, g(x) := ax−1

cx−b .
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Bivariate Bound – STEP 3: Finding τ, c

Then, we need to verify explicitly that this δ, T ,N , g allow us to
perform a local singularity analysis.

Specifically, we need η, ζ > 0 such that

|g(ẑ)| ≤ η < w2 + δ for ẑ ∈ N ,
w2 < ζ ≤ |g(ẑ)| for ẑ ∈ N ′.

Ultimately, this reduces to optimizing
h(ẑ) := |g(ẑ)| on N ,N ′.

We find that η, ζ := h(δ) works.
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Bivariate Bound – STEP 3: Finding τ, c

The rest of this is in a similar vein to the example...

Introduce the integrals I , Iloc , Iout , χ := Iloc − Iout to compute residues.

Show (explicitly) that |I − Iloc | and |Iout | grow exponentially smaller
than λ.

Combine bounds to obtain c , τ such that

|fn1 − χ| < cτn.



Bivariate Bound – STEP 3: Finding τ, c

The rest of this is in a similar vein to the example...

Introduce the integrals I , Iloc , Iout , χ := Iloc − Iout to compute residues.

Show (explicitly) that |I − Iloc | and |Iout | grow exponentially smaller
than λ.

Combine bounds to obtain c , τ such that

|fn1 − χ| < cτn.



Bivariate Bound – STEP 3: Finding τ, c

The rest of this is in a similar vein to the example...

Introduce the integrals I , Iloc , Iout , χ := Iloc − Iout to compute residues.

Show (explicitly) that |I − Iloc | and |Iout | grow exponentially smaller
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Bivariate Bound

PROCEDURE:

1 Verify that our set of assumptions hold for our inputs.
2 Run the smooth ACSV procedure on our inputs, obtaining:

a complex multivariate saddle point integral χ(n).
a function λ(n) such that χ(n) (hence fnr ) is asymptotically equivalent
to λ(n).

3 Compute numbers τ ∈ (0, |w−r |) and c > 0 such that |fnr − χ| < cτn

for all n ∈ Z+.

4 Show that there exists an L ∈ Z+ such that |χ− λ| ≤ λ− cτn, for all
n ≥ L.

5 This L = Nf . Output it.

DONE.
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Main steps in our analysis:

Parametrize N . Write residue χ as a parametrized integral,
identifying A(θ), ϕ(θ):

χ =
(w1w2)

−n

2π

∫ δ

−δ
A(θ)e−nϕ(θ)dθ

Take Taylor series expansion of A, ϕ around 0. Use it to bound error
for e−nϕ,A both inside and outside ball of radius Bn := n−α.

Split up the χ-integral like so:∫ δ

−δ
=

∫ −Bn

−δ
+

∫ −Bn

−Bn

+

∫ δ

Bn
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∫ δ

−δ
=

∫ −Bn

−δ
+

∫ −Bn

−Bn

+

∫ δ

Bn

.

Bound integrals outside [−Bn,Bn] by something exponentially
decaying in n.

Estimate the [Bn,Bn] by a standard Gaussian integral.

Then “add back the tails.”

Apply Lemma 1.

Compile error bounds in a table, propagate forward.



Bivariate Bound – STEP 4: Finding Nf

∫ δ

−δ
=

∫ −Bn

−δ
+

∫ −Bn

−Bn

+

∫ δ

Bn

.

Bound integrals outside [−Bn,Bn] by something exponentially
decaying in n.

Estimate the [Bn,Bn] by a standard Gaussian integral.

Then “add back the tails.”

Apply Lemma 1.

Compile error bounds in a table, propagate forward.



Bivariate Bound – STEP 4: Finding Nf

∫ δ

−δ
=

∫ −Bn

−δ
+

∫ −Bn

−Bn

+

∫ δ

Bn

.

Bound integrals outside [−Bn,Bn] by something exponentially
decaying in n.

Estimate the [Bn,Bn] by a standard Gaussian integral.

Then “add back the tails.”

Apply Lemma 1.

Compile error bounds in a table, propagate forward.



Bivariate Bound – STEP 4: Finding Nf

∫ δ

−δ
=

∫ −Bn

−δ
+

∫ −Bn

−Bn

+

∫ δ

Bn

.

Bound integrals outside [−Bn,Bn] by something exponentially
decaying in n.

Estimate the [Bn,Bn] by a standard Gaussian integral.

Then “add back the tails.”

Apply Lemma 1.

Compile error bounds in a table, propagate forward.



Bivariate Bound – STEP 4: Finding Nf

∫ δ

−δ
=

∫ −Bn

−δ
+

∫ −Bn

−Bn

+

∫ δ

Bn

.

Bound integrals outside [−Bn,Bn] by something exponentially
decaying in n.

Estimate the [Bn,Bn] by a standard Gaussian integral.

Then “add back the tails.”

Apply Lemma 1.

Compile error bounds in a table, propagate forward.



Bivariate Bound – STEP 4: Finding Nf



Bivariate Bound – STEP 4: Finding Nf

Finally, apply Lemma 2 to find N such that ϵλ ≤ λ− cτn whenever
n ≥ N.

Nf = max{N16,
⌈(

c16
ϵ

)1/(3α−1)
⌉
,N}

By above estimate,
|χ− λ| ≤ λ− cτn

for all n ≥ Nf

...And we’re done!
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GRZ Bound Proof Summary

Starting with d ≥ 4 integer,

F (z) = Fd!,d(z) =
1

H(z)
, H(z) = 1−

d∑
i=1

zi + d!
d∏

i=1

zi .

Baryshnikov, Melczer, Pemantle and Straub showed that:

∀d ≥ 4, P(x) = 1− dx + d!xd has a unique root ρ ∈ [ 1d ,
1

d−1)

ρ := (ρ, . . . , ρ) is strictly minimal smooth critical.

Nondegeneracy follows from standard determinant identities.
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GRZ Bound Proof Summary

Step 3 (and also Step 2) are both standard, until...

...we attempt to find

η, ζ. We can find η, but finding ζ reduces to computing

min
ẑ∈N ′

|g(ẑ)| where g(ẑ) :=
1− z1 − · · · − zd−1

1− d!z1 . . . zd−1

and N ′ = T (ρ̂)−N .
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min
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GRZ Bound Proof Summary

Conjecture

ρ+ δ > min
ẑ∈N ′

|g(ẑ)| > ρ = |g(0, 0, . . . , 0)|,

with ζ = minẑ∈N ′ |g(ẑ)| being computable to arbitrary accuracy.



GRZ Bound Proof Summary

Step 4 is similar, with some wrinkles:

When computing Taylor series expansions, such as

ϕ(θ̂) =
1

2
θ̂⊺Hθ̂ + O(||θ̂||31), ||θ̂||1 → 0

need to compute upper bounds for images of compact set under
derivatives of ϕ.

Instead of splitting up domain of integration into 3 parts, we split
space into (d − 1)d−1 subregions.
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When estimating “central” region integral∫
[−Bn,Bn]d−1

e−
n
2
θ̂⊺Hθ̂d θ̂,

need to eliminate cross-terms in quadratic form θ̂⊺Hθ̂.

To do this, use Principal Axis Theorem, which says ∃ orthogonal Q
s.t.

Q⊺HQ =


λ1 0 . . . 0 0 0
0 λ2 0 . . . 0
...

. . .

0 . . . 0 0 λd−1

 .

Thus we get y := Q−1θ s.t. y⊺Hy = λ1y
2
1 + · · ·+ λd−1y

2
d−1.
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Integral:

I =

∫
[−Bn,Bn]d−1

e−
n
2
θ̂⊺Hθ̂d θ̂
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Domain: Integral:

I =

∫
Q⊺([−Bn,Bn]d−1)

e−
n
2
(λ1y2

1+···+λd−1y
2
d−1)dy

...But we don’t actually want to evaluate this! We want to evaluate on
Rd−1 and “add back the tails!”
So, what do we do?
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Domain: Integral:

J :=

∫
Rd−1−(smaller cuboid)

An(y)e−nϕn(y)dy

Can show that

J ≤ (d − 1)d−1 − 1

2
e
− λ1

2(d−1)
n1−2α

.
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Domain: Integral:
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∫
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Domain:

Since

I =

∫
Rd−1

−
∫
Rd−1−Q⊺([−Bn,Bn]d−1)

and ∫
Rd−1−Q⊺([−Bn,Bn]d−1)

≤
∫
Rd−1−(smaller cuboid)

Can sub in bound for J to our expression for I. The rest of it is the same.
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E.g.: Bivariate

Take a = 3, b = 4, c = 3.

The first few entries in ∆F ’s coefficient series
are

1, 21, 667, 22869, 836001, ...

so it’s reasonable to expect our approach to work. Running our procedure
above on this F with parameter values

δ = 1
2 min(w2, π/2, log(

√
b

cw1
)) = w2/2

ϵ = 1/2

α = 2/5

µ = 1/2

yields an index of: Nf = 1307.
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E.g.: Bivariate

For a different choice of parameter values, namely:

δ = (same as prev)

ϵ = 2/5

α = 639/1280

µ = 1/2

we can improve this bound slightly to:

Nf = 1269.

Positivity for all terms up to 1269 can be checked on my machine (Intel
i5-9400, 6 cores, 12GB RAM, no SSD), in a few minutes, using
Mathematica’s default Series expansion routine with no optimization.

Alternatively, using diagonal recurrence, takes a few milliseconds. :)
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Diagonal Recurrences with Creative Telescoping

“Creative Telescoping:”

Pioneered by Wilf and Zeilberger in 1980s & 1990s.

Useful for:

Summing P-recursive sequences
Integrating D-finite functions

THE IDEA:

Given an :=
∑
k

s(n, k), where s is hypergeometric in both n, k .

Know an satisfies some recurrence
ℓ∑

j=1

pj(n)an+j = 0.

‘Cleverly construct’ some t(n, k) such that

ℓ∑
j=1

pj(n)s(n + j , k) = t(n, k + 1)− t(n, k).

Identity involving t then follows by summing over k .
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The point: To compute diagonal coefficients for rational F (z), we can:

Use creative telescoping to derive ODE satisfied by ∆rF (z).

Convert this ODE to recurrence for fnr .

Use recurrence to compute values.



Diagonal Recurrences with Creative Telescoping

The point: To compute diagonal coefficients for rational F (z), we can:

Use creative telescoping to derive ODE satisfied by ∆rF (z).

Convert this ODE to recurrence for fnr .

Use recurrence to compute values.



Diagonal Recurrences with Creative Telescoping

The point: To compute diagonal coefficients for rational F (z), we can:

Use creative telescoping to derive ODE satisfied by ∆rF (z).

Convert this ODE to recurrence for fnr .

Use recurrence to compute values.



GRZ Example

For d = 4 and the following choice of parameters:

ϵ = ϵ̃ = 1/2

α = 4/10

µ = 1

δ = 4/100

...we end up with

Nf = 206271359 ∝ 108.
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For d = 4 and a slightly different choice of parameters:

ϵ = ϵ̃ = 1/2

α = 3/8

µ = 1

δ = 4/100

...we end up with

Nf = 908295 ∝ 106.

Using creative telescoping, obtain diagonal recurrence.

Can reasonably compute recurrence terms up to ≈ 105.

In general, cannot expect to be able to compute Nf diagonal coefficients
easily.
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Future Work

Nf can be improved, to a point, by judicious choice of parameters
(δ, ϵ, α, µ). Find optimal choice of parameters and limit value of Nf

as we approach this point in parameter space.

Obvious improvements in our analysis. Bounds can be tighter.

Solve issue with reduction to optimization problem over Torus in Step
3 of GRZ case.

Automate the analysis in Steps 3 and 4.

Apply this process to other functions in the literature.

Examine degenerate cases, e.g. when our coefficients are eventually
zero in a direction, find Nf guaranteeing henceforward “zero-ness.”

Expand methodology to accommodate general non-smooth case of
ACSV.
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Thank you!

Thank you! :)
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