Explicit Diagonal Asymptotics of Symmetric Multi-Affine Rational **Functions via ACSV**

AARMS

Stephen Melczer **John Hunn Smith**

Diagonal Asymptotics and Positivity

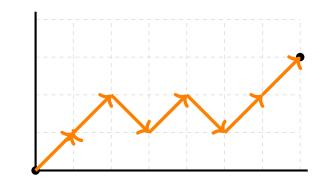
Problem

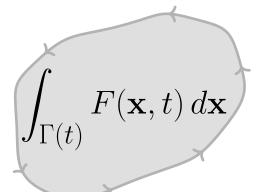
Let $z=(z_1,\ldots z_d)$ be complex variables, $F(z)=\frac{G(z)}{H(z)}$ rational with G and H coprime, $H(\mathbf{0})\neq 0$, and $oldsymbol{r} \in \mathbb{N}^d$. Letting

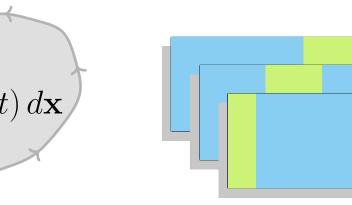
$$F(oldsymbol{z}) = \sum_{oldsymbol{i} \in \mathbb{N}^d} f_{oldsymbol{i}} oldsymbol{z}^{oldsymbol{i}}$$

denote F's power series representation at the origin, compute asymptotics for the diagonal coefficient sequence (f_{nr}) .

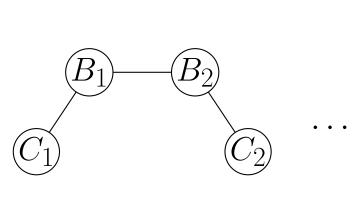
Applications: Diagonals of rational functions appear as counting sequences for...







Irrational Tilings



Graphs & Networks

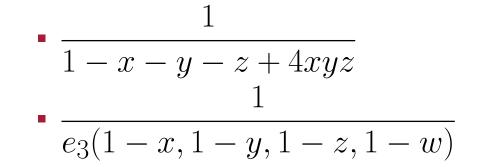
Lattice paths Period Integrals

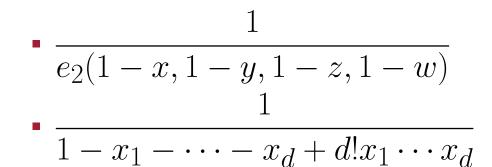
A Special Application – Positivity

Problem

- Total Positivity: Given F, are all f_i positive?
- Directional Positivity: Given r, are all f_{nr} positive?
- Eventual Positivity: Are the f_i (or f_{nr}) eventually positive?

Examples: The following functions are totally positive.

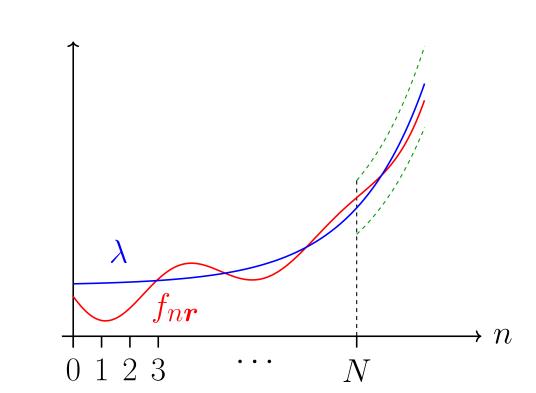




Proving Directional Positivity

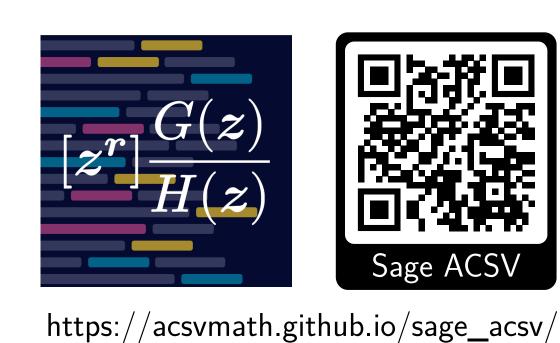
To show $f_{nr} > 0$ for all n:

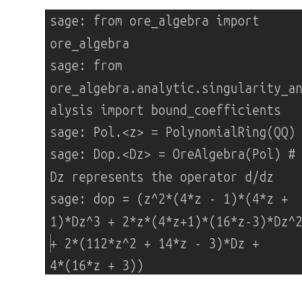
- 1. Derive asymptotic $\lambda(n)$ for f_{nr} .
- 2. Show λ is positive.
- 3. Bound f_{nr} close to λ , explicitly.
- 4. Verify positivity for finitely many terms.



Related Work

Inspired by [Baryshnikov-Melczer-Pemantle-Straub 2018]. There is also the survey [Straub-Zudilin 2015], and the following software:





See the bound_coefficients command in the Ore_Algebra package, or [Dong-Melczer-Mezzarobba 2023].

Ore Algebras

Explicit Asymptotics

Consider H(z) symmetric (invariant under variable permutation) and multi-affine (degree 1 in each variable), so

$$F(\boldsymbol{z}) = \frac{G(\boldsymbol{z})}{1 - \sum_{k=1}^{d} a_k e_k(\boldsymbol{z})},$$

the a_k real and $e_k(z)$ the kth elementary symmetric polynomial in z. Fix $r=(1,1,\ldots,1)$. Points in \mathbb{C}^d contributing to asymptotics of $(f_{n\boldsymbol{r}})$ satisfy

$$H(\boldsymbol{w}) = 0$$

$$H_{z_j}(\boldsymbol{w}) \neq 0 \quad \text{for some } j$$

$$w_1 H_{z_1}(\boldsymbol{w}) - w_j H_{z_j}(\boldsymbol{w}) = 0 \quad (2 \leq j \leq d).$$

- $\bullet \ \delta^H(t) = H(t, t, \dots, t).$
- ρ root of δ^H with minimal modulus.
- $w_0 = (\rho, \rho, \dots, \rho) = \rho \mathbf{1}$, which always contributes via Grace-Walsh-Szegő.
- $E = \{ \text{solutions to } (\star) \text{ with minimal coordinate-wise modulus} \}.$
- $U = \frac{\rho H_{z_i z_j}(\boldsymbol{w}_0)}{H_{z_d}(\boldsymbol{w}_0)}.$
- $\mathcal{H} = (1-U)(I+\mathbf{1}\mathbf{1}^T)$, the Hessian of ϕ at $\mathbf{0}$, as seen in the next column.

Main theorem – Explicit Asymptotic Bounds

Let F, r, ρ satisfy the constraints of the table below. Putting

$$\lambda(n) = \rho^{-(d+1)n} n^{(1-d)/2} \cdot \frac{(2\pi d(1-U))^{(1-d)/2}}{a_1 + \sum_{k=2}^{d} a_k \binom{d-1}{k-1} \rho^{k-1}},$$

 λ is positive, and there exists a computable constant N such that $|f_{nr} - \lambda(n)| < \frac{1}{2}\lambda(n)$ for all $n \geq N$.

Assumption:	Needed so that:
${\cal H}$ irreducible	$\mathcal{V} = \{ \boldsymbol{z} : H(\boldsymbol{z}) = 0 \}$
$E = \{ \boldsymbol{w}_0 \}$	$\mathcal{H} = \mathcal{H}_{oldsymbol{w}}$ is uniform, asymptotic explicit
$H_{z_d}(\boldsymbol{w}_0) \neq 0$	${\cal V}$ is smooth; (also works with $H_{z_j}({m w}_0) eq 0$)
U < 1	$\det \mathcal{H} \neq 0$, $\lambda > 0$
A(0) > 0	$\lambda > 0$
$\rho > 0$	$\lambda > 0$

Corollary: To ensure (f_{nr}) is positive it suffices to check the terms $f_r, f_{2r}, \cdots f_{(N-1)r}$.

Examples

Bivariate $F(x,y) = \frac{1}{1 - ax - by + cxy}$ $a,b,c \ge 0, \ ab > c.$ With $a = c = 3, \ b = 4$ we get N = 1269.

Gillis-Reznick-Zeilberger

$$F(z_1, ..., z_d) = \frac{1}{1 - \sum_i z_i + d! \prod_i z_i}, \quad d \ge 4.$$
 With $d = 4$ we get $N > 10^6$.

Proof Idea

Start with:

$$f_{nm{r}} = rac{1}{(2\pi\mathrm{i})^d} \int_{T(m{y})} F(\mathbf{z}) rac{dm{z}}{m{z}^{nm{r}+m{1}}}, \quad m{y} \ ext{in } F' ext{s domain of convergence.}$$

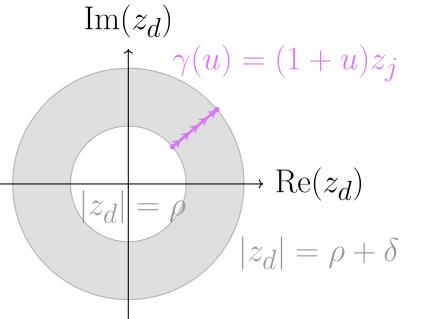
Pick the point w_0 , localize around it:

$$f_{nr} = I = \frac{1}{(2\pi i)^d} \int_{\mathcal{T}} \left(\int_{|z_j| = \rho - \delta} F(\mathbf{z}) \frac{dz_j}{z_j^{nr_j + 1}} \right) \frac{d\hat{z}_j}{\hat{z}_j^{n\hat{r}_j + 1}}$$

$$I^{loc} = \frac{1}{(2\pi i)^d} \int_{\mathcal{N}} \left(\int_{|z_j| = \rho - \delta} F(\mathbf{z}) \frac{dz_j}{z_j^{nr_j + 1}} \right) \frac{d\hat{z}_j}{\hat{z}_j^{n\hat{r}_j + 1}}$$

$$I^{out} = \frac{1}{(2\pi i)^d} \int_{\mathcal{N}} \left(\int_{|z_j| = \rho + \delta} F(\mathbf{z}) \frac{dz_j}{z_j^{nr_j + 1}} \right) \frac{d\hat{z}_j}{\hat{z}_j^{n\hat{r}_j + 1}}$$

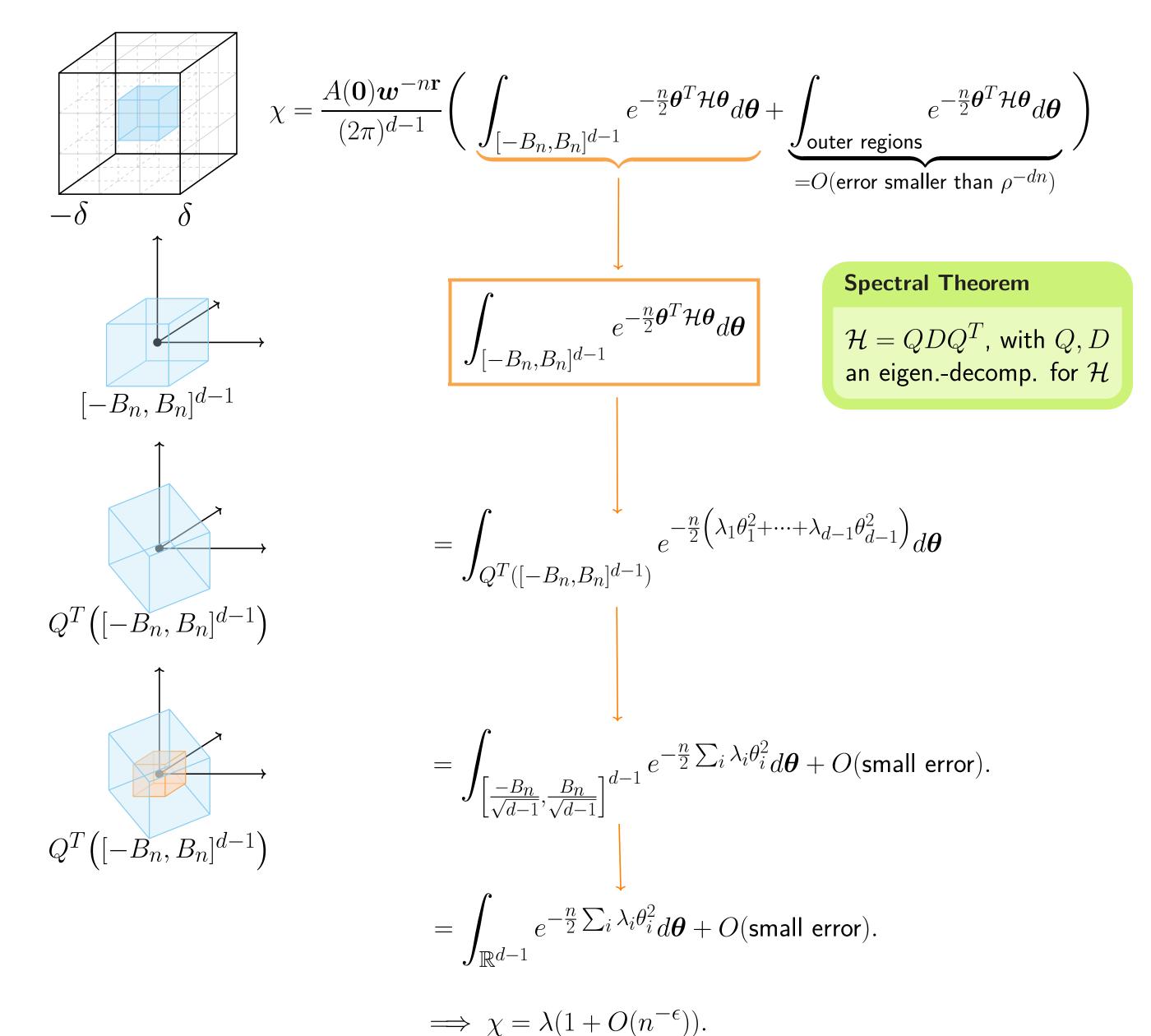
$$\gamma = I^{loc} - I^{out}$$



• Can show $|I - I^{\mathrm{loc}}|, \quad |I^{\mathrm{out}}| < c \tau^n < \rho^{-dn}.$

• So, $|f_{n\boldsymbol{r}} - \chi| \leq |I - I^{\mathrm{loc}}| + |I^{\mathrm{out}}| = O(\tau^n)$ for some $\tau < \rho^{-dn}$.

Parametrize \mathcal{N} , write χ as saddle point integral: $\chi = \frac{\boldsymbol{w}^{-n}}{(2\pi)^{d-1}} \int_{[-\delta,\delta]^{d-1}} A(\boldsymbol{\theta}) e^{-n\phi(\boldsymbol{\theta})} d\boldsymbol{\theta}$



Combining:

$$|f_{n}r - \lambda| \leq |f_{n}r - \chi| + |\chi - \lambda|$$

$$< c\tau^n + \lambda n^{-\epsilon} \leq \frac{1}{2}\lambda, \text{ as needed. } \square$$